Nanotech metallurgy

From Wikipedia, the free encyclopedia
SEM images acquired at 52° tilt angle and at different magnification showing uniform distribution and dispersion of SiC nanoparticles in as-solidified Mg.[1]

Nanotech metallurgy (also called nanotechnology enabled metallurgy, or nanometallurgy) is an emerging interdisciplinary domain of materials science and engineering (especially metallurgy), manufacturing, and nanoscience and engineering to study how nanophases (both ex situ and in situ) can be applied to significantly improve the processing/manufacturing, micro/nano-structures, and physical/chemical/mechanical behaviors of metals and alloys. This definition was first proposed by Xiaochun Li [2] at the University of California, Los Angeles in 2018, although nanotechnology in metallurgy can be dated back some centuries to the role of precipitates in materials such as Wootz steel and Damascus steel.

High performance metals and alloys offer potential to improve energy efficiency and system performance. While conventional metallurgical methods have reached certain limits, nanotech metallurgy has the potential to break the traditional barriers in the metals processing and manufacturing technologies. It has a wider scientific and technological reach beyond the concept of metal matrix nanocomposites (MMNCs),[3][4] as the study of MMNCs normally focuses on how nanoparticles (generally of high volume fractions) are used to tune material properties only.[5] With the development of more scalable methods of nanophase synthesis, incorporation, and dispersion for mass manufacturing, the metals and alloys produced by nanotech metallurgy are becoming more and more economical. Recently the discovery of a nanoparticle self-dispersion and stabilization mechanism in molten metals[6] gives a scientific and technical foundation for scalable manufacturing in nanotech metallurgy.

Fundamental concepts[edit]

Nanotech metallurgy covers research areas such as nanophase effects on processing/manufacturing, materials properties (e.g. mechanical, physical and chemical properties), synthesis and production of nanophases (both in situ[7] and ex situ), interaction between nanophases and molten metal, solidification, and thermomechanical processing of metals containing nanophases.[8]

Nanophase effects on metals processing and manufacturing[edit]

Nanophases can be effectively used to tune microstructures of metals and alloys during solidification and thermomechanical deformation, to control recrystallization at elevated temperatures, and to break traditional metallurgical barriers, thus creating exciting new spaces in processing and manufacturing, such as in casting,[9] thermoplastic deformation, welding/joining, heat treatment, and machining, etc..

Nanophase effects on materials properties[edit]

Nanophases have significant effects on mechanical, physical and chemical properties of metals.[10][11] As compared with conventional metal matrix composites (MMCs) that are reinforced by micro-scale phases, the addition of nanophases is promising to overcome many disadvantages of MMCs such as poor ductility, machinability and low fracture toughness. For example, a super-strong but lightweight metal with extremely high specific strength and modulus was developed by disperse ceramic silicon carbide nanoparticles in magnesium.[12]

Nanophases synthesis and production[edit]

Nanotech metallurgy covers the synthesis, production and incorporation of nanophases (e.g. nanoparticles,[13] nanowires,[14] nanosheets,[15] carbon nanotubes (CNTs),[16][17] graphene,[18] etc.). To utilize the cutting edge nanotechnology to metallurgy, the scalability and cost of the nanophases are the major concerning factors to evaluate the feasibility. It is worth to mention that, with the rapid development of nanophase synthesis, production, incorporation, and dispersion, the cost of nanophases are becoming increasingly economical for metallurgy. Recent studies (e.g. molten salt reaction,[19] in-situ reaction[20] etc.) on molten salt based nanophase synthesis and incorporation indicatefurther ways to reduce the cost of nanophases and open up wider applications

Nanoparticles and molten metal interactions[edit]

The interactions between nanophases and molten metal include wetting, incorporation, mixing and dispersion.

  • Wetting is the key factor for effective incorporation and dispersion[21]
  • Incorporation methods including molten salt enabled incorporation, ultrasonic,[22] semi-solid fabrication[23][24] could be used.
  • Mixing: mechanical mixing by propeller, ultrasonic streaming effect and electromagnetic stirring
  • Dispersion and stabilization of nanoparticles in melts.[25]

Solidification of metals containing nanophases[edit]

Researchers have utilized the nanoparticles to refine the grain for different alloys(e.g. Al alloy,[26] Mg alloy,[27] etc.) during solidification including casting, welding,[28] 3D printing,[29] etc. They can modify the grain size by serving as heterogeneous nucleation site or inhibiting grain growth during solidification. Nanoparticles can help to refine the secondary phase as well.

Thermomechanical processing[edit]

Current research activities[edit]

  • In situ[46][47][48] and ex situ synthesis, production, and incorporation of nanoparticles[49][50][51]
  • Pseudo phase diagrams of alloys with nanoparticles[52][53]
  • Materials design and modelling
  • Nanoparticle dispersion and distribution in metals and alloys[54]
  • Fundamental study on nanoparticle interactions with molten metal and solidification fronts (e.g. nanoparticle incorporation, wettability, mixing, distribution, dispersion, stability, pushing and capture, etc.)
  • Nanoparticle induced micro/nano-structure refinement and modification[55][56]
  • Nanoparticle effects on thermomechanical processing and manufacturing, including heat treatment,[57] thermoplastic deformation,[58] welding/joining, and machining,[59] etc.
  • Nanoparticle effect on mechanical/physical/chemical behaviours of metals and alloys, such as strengthening mechanisms, fatigue resistance, electrical and thermal performance, and corrosion resistance, etc.
  • Additive Manufacturing of metals with nanoparticles
  • Processing of metal powders containing nanoparticles[60][61]
  • High energy beam interactions with metals containing nanoparticles
  • Development and integration of scale up processing and manufacturing systems[62]
  • Functional testing methods[63]
  • Sustainability and life cycle analysis

Applications[edit]

Nanotech metallurgy can be applied to a wide range applications including automobile,[64] sports, biomedical, electrical and electronics, aerospace, and defense s, etc.[65][66]

See also[edit]

References[edit]

  1. ^ Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature. 528 (7583): 539–543. Bibcode:2015Natur.528..539C. doi:10.1038/nature16445. ISSN 0028-0836. PMID 26701055. S2CID 4461700.
  2. ^ "Xiaochun Li".
  3. ^ Casati, Riccardo; Vedani, Maurizio (2014-03-10). "Metal Matrix Composites Reinforced by Nano-Particles—A Review". Metals. 4 (1): 65–83. doi:10.3390/met4010065. hdl:11311/866334. ISSN 2075-4701.
  4. ^ Zhang, Z.; Chen, D.L. (June 2008). "Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites". Materials Science and Engineering: A. 483–484: 148–152. doi:10.1016/j.msea.2006.10.184.
  5. ^ Tjong, S. C. (August 2007). "Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties". Advanced Engineering Materials. 9 (8): 639–652. doi:10.1002/adem.200700106. S2CID 135577337.
  6. ^ Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature. 528 (7583): 539–543. Bibcode:2015Natur.528..539C. doi:10.1038/nature16445. ISSN 0028-0836. PMID 26701055. S2CID 4461700.
  7. ^ Knipling, Keith E.; Karnesky, Richard A.; Lee, Constance P.; Dunand, David C.; Seidman, David N. (September 2010). "Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging". Acta Materialia. 58 (15): 5184–5195. Bibcode:2010AcMat..58.5184K. doi:10.1016/j.actamat.2010.05.054.
  8. ^ Chookajorn, T.; Murdoch, H. A.; Schuh, C. A. (2012-08-24). "Design of Stable Nanocrystalline Alloys". Science. 337 (6097): 951–954. Bibcode:2012Sci...337..951C. doi:10.1126/science.1224737. hdl:1721.1/80308. ISSN 0036-8075. PMID 22923577. S2CID 30958469.
  9. ^ Choi, Hongseok; Cho, Woo-hyun; Konishi, Hiromi; Kou, Sindo; Li, Xiaochun (April 2013). "Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy". Metallurgical and Materials Transactions A. 44 (4): 1897–1907. Bibcode:2013MMTA...44.1897C. doi:10.1007/s11661-012-1531-8. ISSN 1073-5623. S2CID 137696158.
  10. ^ Huang, Bo; Hishinuma, Yoshimitsu; Noto, Hiroyuki; Muroga, Takeo (March 2019). "Mechanochemical processing of Cu-Y2O3 alloy by MA-HIP for heat sink materials application". Fusion Engineering and Design. 140: 33–40. doi:10.1016/j.fusengdes.2019.01.133. ISSN 0920-3796. S2CID 127811484.
  11. ^ Zhukov, Ilya; Kozulin, Alexander; Khrustalyov, Anton; Matveev, Alexey; Platov, Vladimir; Vorozhtsov, Alexander; Zhukova, Tatyana; Promakhov, Vladimir (2019-01-11). "The Impact of Particle Reinforcement with Al2O3, TiB2, and TiC and Severe Plastic Deformation Treatment on the Combination of Strength and Electrical Conductivity of Pure Aluminum". Metals. 9 (1): 65. doi:10.3390/met9010065. ISSN 2075-4701.
  12. ^ Li, Xiao-Chun; Mathaudhu, Suveen; Yang, Jenn-Ming; Bhowmick, Sanjit; Ma, Xiaolong; Pozuelo, Marta; Choi, Hongseok; Xu, Jia-Quan; Chen, Lian-Yi (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature. 528 (7583): 539–543. Bibcode:2015Natur.528..539C. doi:10.1038/nature16445. ISSN 1476-4687. PMID 26701055. S2CID 4461700.
  13. ^ Jiang, Lin; Yang, Hanry; Yee, Joshua K.; Mo, Xuan; Topping, Troy; Lavernia, Enrique J.; Schoenung, Julie M. (January 2016). "Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles". Acta Materialia. 103: 128–140. Bibcode:2016AcMat.103..128J. doi:10.1016/j.actamat.2015.09.057. ISSN 1359-6454.
  14. ^ Huang, Liqing; Qian, Ma; Liu, Zuming; Nguyen, Van Thuong; Yang, Lei; Wang, Lihua; Zou, Jin (February 2018). "In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites" (PDF). Journal of Alloys and Compounds. 735: 2640–2645. doi:10.1016/j.jallcom.2017.11.238. ISSN 0925-8388.
  15. ^ Liu, Jinghang; Khan, Umar; Coleman, Jonathan; Fernandez, Bea; Rodriguez, Pablo; Naher, Sumsun; Brabazon, Dermot (March 2016). "Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics" (PDF). Materials & Design. 94: 87–94. doi:10.1016/j.matdes.2016.01.031. ISSN 0264-1275.
  16. ^ Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng (2016-05-17). "Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes". Scientific Reports. 6 (1): 26258. Bibcode:2016NatSR...626258W. doi:10.1038/srep26258. ISSN 2045-2322. PMC 4869099. PMID 27185503.
  17. ^ Zhou, Weiwei; Bang, Sora; Kurita, Hiroki; Miyazaki, Takamichi; Fan, Yuchi; Kawasaki, Akira (January 2016). "Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites". Carbon. 96: 919–928. Bibcode:2016Carbo..96..919Z. doi:10.1016/j.carbon.2015.10.016. ISSN 0008-6223.
  18. ^ Yazdani, Bahareh; Xia, Yongde; Ahmad, Iftikhar; Zhu, Yanqiu (January 2015). "Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites". Journal of the European Ceramic Society. 35 (1): 179–186. doi:10.1016/j.jeurceramsoc.2014.08.043. hdl:10871/17546. ISSN 0955-2219.
  19. ^ Hong, Tianran; Li, Xianfeng; Wang, Haowei; Chen, Dong (2015-05-14). "Influence of solution temperature on microstructure and properties of in-situ TiB2/2009 composites". Materials Science and Engineering: A. 634: 1–4. doi:10.1016/j.msea.2015.03.037. ISSN 0921-5093.
  20. ^ Estruga, Marc; Chen, Lianyi; Choi, Hongseok; Li, Xiaochun; Jin, Song (2013-08-29). "Ultrasonic-Assisted Synthesis of Surface-Clean TiB2 Nanoparticles and Their Improved Dispersion and Capture in Al-Matrix Nanocomposites". ACS Applied Materials & Interfaces. 5 (17): 8813–8819. doi:10.1021/am402719p. ISSN 1944-8244. PMID 23957877.
  21. ^ "Wettability at High Temperatures". Pergamon Materials Series. 3. 1999. doi:10.1016/s1470-1804(99)x8001-1. ISBN 9780080421469. ISSN 1470-1804.
  22. ^ Li, Xiaochun; Yang, Yong; Cheng, Xudong (May 2004). "Ultrasonic-assisted fabrication of metal matrix nanocomposites". Journal of Materials Science. 39 (9): 3211–3212. Bibcode:2004JMatS..39.3211L. doi:10.1023/B:JMSC.0000025862.23609.6f. ISSN 0022-2461. S2CID 136850091.
  23. ^ Ying, D.Y; Zhang, D.L (2000-06-30). "Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling". Materials Science and Engineering: A. 286 (1): 152–156. doi:10.1016/s0921-5093(00)00627-4.
  24. ^ Fogagnolo, J.B; Velasco, F.; Robert, M.H; Torralba, J.M (2003-02-15). "Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders". Materials Science and Engineering: A. 342 (1–2): 131–143. doi:10.1016/s0921-5093(02)00246-0.
  25. ^ Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature. 528 (7583): 539–543. Bibcode:2015Natur.528..539C. doi:10.1038/nature16445. ISSN 0028-0836. PMID 26701055. S2CID 4461700.
  26. ^ Zhang, Pengchao; Jie, Jinchuan; Li, Hang; Wang, Tongmin; Li, Tingju (2015-02-18). "Microstructure and properties of TiB2 particles reinforced Cu–Cr matrix composite". Journal of Materials Science. 50 (9): 3320–3328. Bibcode:2015JMatS..50.3320Z. doi:10.1007/s10853-014-8762-6. ISSN 0022-2461. S2CID 135865254.
  27. ^ Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature. 528 (7583): 539–543. Bibcode:2015Natur.528..539C. doi:10.1038/nature16445. ISSN 0028-0836. PMID 26701055. S2CID 4461700.
  28. ^ Sokoluk, Maximilian; Cao, Chezheng; Pan, Shuaihang; Li, Xiaochun (2019-01-09). "Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075". Nature Communications. 10 (1): 98. Bibcode:2019NatCo..10...98S. doi:10.1038/s41467-018-07989-y. ISSN 2041-1723. PMC 6327098. PMID 30626876.
  29. ^ Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M. (September 2017). "3D printing of high-strength aluminium alloys". Nature. 549 (7672): 365–369. Bibcode:2017Natur.549..365M. doi:10.1038/nature23894. ISSN 0028-0836. PMID 28933439. S2CID 4460206.
  30. ^ De Cicco, Michael P.; Turng, Lih-Sheng; Li, Xiaochun; Perepezko, John H. (2011-08-01). "Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants". Metallurgical and Materials Transactions A. 42 (8): 2323–2330. Bibcode:2011MMTA...42.2323D. doi:10.1007/s11661-011-0607-1. ISSN 1543-1940. S2CID 135486412.
  31. ^ Chen, Kaixuan; Chen, Xiaohua; Ding, Ding; Shi, Guodong; Wang, Zidong (April 2016). "Heterogeneous nucleation effect of in situ iron-rich nanoparticles on grain refinement of copper alloy". Materials Letters. 168: 188–191. doi:10.1016/j.matlet.2016.01.027. ISSN 0167-577X.
  32. ^ Clouet, Emmanuel; Nastar, Maylise; Sigli, Christophe (2004-02-19). "Nucleation of ${\mathrm{Al}}_{3}\mathrm{Zr}$ and ${\mathrm{Al}}_{3}\mathrm{Sc}$ in aluminum alloys: From kinetic Monte Carlo simulations to classical theory". Physical Review B. 69 (6): 064109. arXiv:cond-mat/0402137. doi:10.1103/PhysRevB.69.064109. S2CID 42789053.
  33. ^ Li, Xiao-Chun; Jin, Song; Hiromi Konishi; Choi, Hongseok; Xu, Jia-Quan; Chen, Lian-Yi (2014-05-09). "Rapid control of phase growth by nanoparticles". Nature Communications. 5: 3879. Bibcode:2014NatCo...5.3879C. doi:10.1038/ncomms4879. ISSN 2041-1723. PMC 4024764. PMID 24809454.
  34. ^ Cao, Chezheng; Chen, Lianyi; Xu, Jiaquan; Zhao, Jingzhou; Pozuelo, Marta; Li, Xiaochun (July 2016). "Phase control in immiscible Zn-Bi alloy by tungsten nanoparticles". Materials Letters. 174: 213–216. doi:10.1016/j.matlet.2016.03.105. ISSN 0167-577X.
  35. ^ Guo, Enyu; Shuai, Sansan; Kazantsev, Daniil; Karagadde, Shyamprasad; Phillion, A.B.; Jing, Tao; Li, Wenzhen; Lee, Peter D. (June 2018). "The influence of nanoparticles on dendritic grain growth in Mg alloys" (PDF). Acta Materialia. 152: 127–137. Bibcode:2018AcMat.152..127G. doi:10.1016/j.actamat.2018.04.023.
  36. ^ Xu, J Q; Chen, L Y; Choi, H; Li, X C (2012-05-28). "Theoretical study and pathways for nanoparticle capture during solidification of metal melt". Journal of Physics: Condensed Matter. 24 (25): 255304. Bibcode:2012JPCM...24y5304X. doi:10.1088/0953-8984/24/25/255304. ISSN 0953-8984. PMID 22640981.
  37. ^ Li, Xiaochun; Chezheng Cao; Chen, Lianyi; Ma, Chao (2017-01-18). "Nanoparticle-induced unusual melting and solidification behaviours of metals". Nature Communications. 8: 14178. Bibcode:2017NatCo...814178M. doi:10.1038/ncomms14178. ISSN 2041-1723. PMC 5253640. PMID 28098147.
  38. ^ Bashirnezhad, Kazem; Bazri, Shahab; Safaei, Mohammad Reza; Goodarzi, Marjan; Dahari, Mahidzal; Mahian, Omid; Dalkılıça, Ahmet Selim; Wongwises, Somchai (April 2016). "Viscosity of nanofluids: A review of recent experimental studies". International Communications in Heat and Mass Transfer. 73: 114–123. doi:10.1016/j.icheatmasstransfer.2016.02.005.
  39. ^ Bartels, C.; Raabe, D.; Gottstein, G.; Huber, U. (September 1997). "Investigation of the precipitation kinetics in an A16061/TiB2 metal matrix composite". Materials Science and Engineering: A. 237 (1): 12–23. doi:10.1016/S0921-5093(97)00104-4.
  40. ^ Saboori, Abdollah; Padovano, Elisa; Pavese, Matteo; Dieringa, Hajo; Badini, Claudio (2017-12-02). "Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles". Materials. 10 (12): 1380. Bibcode:2017Mate...10.1380S. doi:10.3390/ma10121380. ISSN 1996-1944. PMC 5744315. PMID 29207461.
  41. ^ Reddy, M. Penchal; Shakoor, R.A.; Parande, Gururaj; Manakari, Vyasaraj; Ubaid, F.; Mohamed, A.M.A.; Gupta, Manoj (October 2017). "Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques". Progress in Natural Science: Materials International. 27 (5): 606–614. doi:10.1016/j.pnsc.2017.08.015. hdl:10576/16877. ISSN 1002-0071.
  42. ^ Jamaati, Roohollah; Toroghinejad, Mohammad Reza; Edris, Hossein (February 2014). "Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process". Materials & Design. 54: 168–173. doi:10.1016/j.matdes.2013.08.033.
  43. ^ Li, Xiaochun; Shuaihang Pan; Cao, Chezheng; Sokoluk, Maximilian (2019-01-09). "Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075". Nature Communications. 10 (1): 98. Bibcode:2019NatCo..10...98S. doi:10.1038/s41467-018-07989-y. ISSN 2041-1723. PMC 6327098. PMID 30626876.
  44. ^ Liu, Jian; Li, Juan; Xu, Chengying (2014). "Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review". CIRP Journal of Manufacturing Science and Technology. 7 (2): 55–70. doi:10.1016/j.cirpj.2014.01.003.
  45. ^ Gopalakannan, S.; Senthilvelan, T. (October 2013). "Application of response surface method on machining of Al–SiC nano-composites". Measurement. 46 (8): 2705–2715. Bibcode:2013Meas...46.2705G. doi:10.1016/j.measurement.2013.04.036.
  46. ^ Liddicoat, Peter V.; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y.; Lavernia, Enrique J.; Valiev, Ruslan Z.; Ringer, Simon P. (December 2010). "Nanostructural hierarchy increases the strength of aluminium alloys". Nature Communications. 1 (1): 63. Bibcode:2010NatCo...1...63L. doi:10.1038/ncomms1062. ISSN 2041-1723. PMID 20842199.
  47. ^ Knipling, Keith E.; Karnesky, Richard A.; Lee, Constance P.; Dunand, David C.; Seidman, David N. (September 2010). "Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging". Acta Materialia. 58 (15): 5184–5195. Bibcode:2010AcMat..58.5184K. doi:10.1016/j.actamat.2010.05.054.
  48. ^ Borgonovo, Cecilia; Apelian, Diran (February 2011). "Manufacture of Aluminum Nanocomposites: A Critical Review". Materials Science Forum. 678: 1–22. doi:10.4028/www.scientific.net/MSF.678.1. ISSN 1662-9752. S2CID 137107748.
  49. ^ Liu, Weiqing; Cao, Chezheng; Xu, Jiaquan; Wang, Xiaojun; Li, Xiaochun (December 2016). "Molten salt assisted solidification nanoprocessing of Al-TiC nanocomposites". Materials Letters. 185: 392–395. doi:10.1016/j.matlet.2016.09.023.
  50. ^ Li, Zhiming; Chen, Dong; Wang, Haowei; Lavernia, Enrique J.; Shan, Aidang (2014-11-03). "Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling". Journal of Materials Research. 29 (21): 2514–2524. Bibcode:2014JMatR..29.2514L. doi:10.1557/jmr.2014.280. ISSN 0884-2914.
  51. ^ Tang, Y.; Chen, Z.; Borbély, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W. (April 2015). "Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy". Materials Characterization. 102: 131–136. doi:10.1016/j.matchar.2015.03.003. hdl:10067/1264430151162165141. ISSN 1044-5803.
  52. ^ Terry, B. S.; Chinyamakobvu, O. S. (May 1992). "Dispersion and reaction of TiC in liquid iron alloys". Materials Science and Technology. 8 (5): 399–405. Bibcode:1992MatST...8..399T. doi:10.1179/mst.1992.8.5.399. ISSN 0267-0836.
  53. ^ Tanaka, K.; Saito, T. (May 1999). "Phase equilibria in TiB2-reinforced high modulus steel". Journal of Phase Equilibria. 20 (3): 207–214. doi:10.1361/105497199770335730. ISSN 1054-9714.
  54. ^ Karak, S.K.; Dutta Majumdar, J.; Witczak, Z.; Lojkowski, W.; Manna, I. (September 2013). "Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion". Materials Science and Engineering: A. 580: 231–241. doi:10.1016/j.msea.2013.04.085. ISSN 0921-5093.
  55. ^ Springer, H.; Aparicio Fernandez, R.; Duarte, M.J.; Kostka, A.; Raabe, D. (September 2015). "Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe–TiB 2". Acta Materialia. 96: 47–56. Bibcode:2015AcMat..96...47S. doi:10.1016/j.actamat.2015.06.017. ISSN 1359-6454.
  56. ^ Liu, G.; Zhang, G. J.; Jiang, F.; Ding, X. D.; Sun, Y. J.; Sun, J.; Ma, E. (2013-01-27). "Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility". Nature Materials. 12 (4): 344–350. Bibcode:2013NatMa..12..344L. doi:10.1038/nmat3544. ISSN 1476-1122. PMID 23353630.
  57. ^ Hajlaoui, K.; Yavari, A.R.; LeMoulec, A.; Botta, W.J.; Vaughan, F.G.; Das, J.; Greer, A.L.; Kvick, Å. (March 2007). "Plasticity induced by nanoparticle dispersions in bulk metallic glasses". Journal of Non-Crystalline Solids. 353 (3): 327–331. Bibcode:2007JNCS..353..327H. doi:10.1016/j.jnoncrysol.2006.10.011. ISSN 0022-3093.
  58. ^ Liu, Weiqing; Wang, Xiaojun; Hu, Xiaoshi; Wu, Kun; Zheng, Mingyi (January 2017). "Effects of hot rolling on microstructure, macrotexture and mechanical properties of pre-extruded AZ31/SiC nanocomposite sheets". Materials Science and Engineering: A. 683: 15–23. doi:10.1016/j.msea.2016.11.007.
  59. ^ Jarin, S.; Saleh, T.; Rana, M.; Muthalif, A.G.A.; Ali, M.Y. (2017). "An Experimental Investigation on the Effect of Nanopowder for Micro-Wire Electro Discharge Machining of Gold Coated Silicon". Procedia Engineering. 184: 171–177. doi:10.1016/j.proeng.2017.04.082. ISSN 1877-7058.
  60. ^ Yao, Gongcheng; Cao, Chezheng; Pan, Shuaihang; Lin, Ting-Chiang; Sokoluk, Maximilian; Li, Xiaochun (March 2019). "High-performance copper reinforced with dispersed nanoparticles". Journal of Materials Science. 54 (5): 4423–4432. Bibcode:2019JMatS..54.4423Y. doi:10.1007/s10853-018-3152-0. ISSN 0022-2461. S2CID 139349269.
  61. ^ Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun (December 2013). "Assembly of metals and nanoparticles into novel nanocomposite superstructures". Scientific Reports. 3 (1): 1730. Bibcode:2013NatSR...3E1730X. doi:10.1038/srep01730. ISSN 2045-2322. PMC 3636328.
  62. ^ Parashivamurthy, K. I.; Chandrasekharaiah, M. N.; Sampathkumaran, P.; Seetharamu, S. (August 2006). "Casting of TiC-Reinforced Steel Matrix Composite". Materials and Manufacturing Processes. 21 (5): 473–478. doi:10.1080/10426910500471474. ISSN 1042-6914. S2CID 135877489.
  63. ^ Parker, W. J.; Jenkins, R. J.; Butler, C. P.; Abbott, G. L. (September 1961). "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity". Journal of Applied Physics. 32 (9): 1679–1684. Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417. ISSN 0021-8979.
  64. ^ Pollock, Tresa M.; Schaedler, Tobias A.; Justin A. Mayer; Hundley, Jacob M.; Yahata, Brennan D.; Martin, John H. (September 2017). "3D printing of high-strength aluminium alloys". Nature. 549 (7672): 365–369. Bibcode:2017Natur.549..365M. doi:10.1038/nature23894. ISSN 1476-4687. PMID 28933439. S2CID 4460206.
  65. ^ Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Karbalaei Akbari, M.; Pakseresht, A.H.; Ghasali, E.; Naebe, M. (March 2016). "Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling". Materials Science and Engineering: A. 658: 135–149. doi:10.1016/j.msea.2016.01.114. ISSN 0921-5093.
  66. ^ Ghasali, Ehsan; Pakseresht, Amirhossein; Rahbari, Ali; Eslami-shahed, Hossein; Alizadeh, Masoud; Ebadzadeh, Touradj (May 2016). "Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites". Journal of Alloys and Compounds. 666: 366–371. doi:10.1016/j.jallcom.2016.01.118. ISSN 0925-8388.