User:Myxomatosis57/Greymachine

From Wikipedia, the free encyclopedia

Temporal metamaterial, also known as time-varying metamaterial, is a metamaterial whose dispersive properties vary with time. Unlike conventional metamaterials, whose constitutive properties are engineered through its periodically stacked constituents (spatial modulation), temporal metamaterials are formed by the temporal modulation of the such parameters, which introduces further exotic properties not found in the latter if the switching bandwidth is in the order of modulation frequency. A subclass of these materials, whose properties are modulated both in time and space, are known as space-time metamaterials.

For electromagnetic waves, temporal modulation of the canonical material properties, such as permittivity, permeability or surface impedance, can be achieved through varactor switching, magneto-optic effect or nonlinearity, among others.

History[edit]

Properties[edit]

Experimental verifications and applications[edit]

See also[edit]

References[edit]

  1. ^ Caloz, Christophe; Deck-Léger, Zoé-Lise (2020). "Spacetime Metamaterials—Part I: General Concepts". IEEE Transactions on Antennas and Propagation. 68 (3): 1569–1582. doi:10.1109/TAP.2019.2944225.
  2. ^ Caloz, Christophe; Deck-Léger, Zoé-Lise (2020). "Spacetime Metamaterials—Part II: Theory and Applications". IEEE Transactions on Antennas and Propagation. 68 (3): 1569–1582. doi:10.1109/TAP.2019.2944216.
  3. ^ Chamanara, Nima; Vahabzadeh, Yousef; Caloz, Christophe (April 2019). "Simultaneous Control of the Spatial and Temporal Spectra of Light With Space-Time Varying Metasurfaces". IEEE Transactions on Antennas and Propagation. 67 (4): 2430–2441. doi:10.1109/TAP.2019.2891706.
  4. ^ Fante, R. (1971). "Transmission of electromagnetic waves into time-varying media". IEEE Transactions on Antennas and Propagation. 19 (3): 417–424. doi:10.1109/TAP.1971.1139931.
  5. ^ Felsen, L.; Whitman, G. (1970). "Wave propagation in time-varying media". IEEE Transactions on Antennas and Propagation. 18 (2): 242–253. doi:10.1109/TAP.1970.1139657.
  6. ^ Galiffi, Emanuele; Tirole, Romain; Yin, Shixiong; Li, Huanan; Vezzoli, Stefano; Huidobro, Paloma A.; Silveirinha, Mário G.; Sapienza, Riccardo; Alù, Andrea; Pendry, J. B. (2022). "Photonics of time-varying media". Advanced Photonics. 4 (1): 014002. doi:10.1117/1.AP.4.1.014002.
  7. ^ Huang, Jiahui; Zhou, Xiaoming (2019). "A time-varying mass metamaterial for non-reciprocal wave propagation". International Journal of Solids and Structures. 164: 25–36.
  8. ^ Lee, Kanghee; Son, Jaehyeon; Park, Jagang; Kang, Byungsoo; Jeon, Wonju; Rotermund, Fabian; Min, Bumki (2018). "Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces". Nature Photonics. 12: 765–773. doi:10.1038/s41566-018-0259-4.
  9. ^ Liu, Mingkai; Kozyrev, Alexander B.; Shadrivov, Ilya V. (2019). "Time-varying Metasurfaces for Broadband Spectral Camouflage". Physical Review Applied. 12: 054052. doi:10.1103/PhysRevApplied.12.054052.
  10. ^ Mirmoosa, M. S.; Koutserimpas, T. T.; Ptitcyn, G. A.; Tretyakov, S. A.; Fleury, R. (2022). "Dipole polarizability of time-varying particles". New Journal of Physics. 24: 063004. doi:10.1088/1367-2630/ac6b4c.
  11. ^ Moussa, Hady Moussa; Xu, Gengyu; Yin, Shixiong; Galiffi, Emanuele; Ra’di, Younes; Alù, Andrea (13 March 2023). "Observation of temporal reflection and broadband frequency translation at photonic time interfaces". Nature Physics. doi:10.1038/s41567-023-01975-y.
  12. ^ Pacheco-Peña, Victor; Engheta, Nader (2019). "Effective medium concept in temporal metamaterials". Nanophotonics. 9 (2): 379–391. doi:10.1515/nanoph-2019-0305.
  13. ^ Pacheco-Peña, Victor; Engheta, Nader (2020). "Antireflection temporal coatings". Optica. 7 (4): 323–331. doi:10.1364/OPTICA.381175.
  14. ^ Pacheco-Peña, Victor; Engheta, Nader (2021). "Temporal equivalent of the Brewster angle". Physical Review B. 104 (21): 214308. doi:10.1103/PhysRevB.104.214308.
  15. ^ Ptitcyn, G.; Mirmoosa, M. S.; Tretyakov, S. A. (2019). "Time-modulated meta-atoms". Physical Review Research. 1: 023014. doi:10.1103/PhysRevResearch.1.023014.
  16. ^ Ramaccia, Davide; Sounas, Dimitrios L.; Alù, Andrea; Bilotti, Filiberto; Toscano, Alessandro (2018). "Nonreciprocity in Antenna Radiation Induced by Space-Time Varying Metamaterial Cloaks". IEEE Antennas and Wireless Propagation Letters. 17 (11): 1968–1972. doi:10.1109/LAWP.2018.2870688.
  17. ^ Ramaccia, D.; Alù, A.; Toscano, A.; Bilotti, F. (2021). "Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials". Applied Physics Letters. 118 (10): 101901. doi:10.1063/5.0042567.
  18. ^ Shaltout, A. M.; Shalaev, V. M.; Brongersma, M. L. (17 May 2019). "Spatiotemporal light control with active metasurfaces". Science. 364 (6441). doi:10.1126/science.aat3100.
  19. ^ Taravati, Sajjad; Eleftheriades, George V. (14 August 2019). "Generalized Space-Time-Periodic Diffraction Gratings: Theory and Applications". Physical Review Applied. 12 (2): 024026. doi:10.1103/PhysRevApplied.12.024026.
  20. ^ Xiao, Yuzhe; Maywar, Drew N.; Agrawal, Govind P. (2014). "Reflection and transmission of electromagnetic waves at a temporal boundary". Optics Letters. 39 (3): 574–577. doi:10.1364/OL.39.000574.
  21. ^ Wang, Xuchen; Díaz-Rubio, Ana; Li, Huanan; Tretyakov, Sergei A.; Alù, Andrea (2020). "Theory and Design of Multifunctional Space-Time Metasurfaces". Physical Review Applied. 13: 044040. doi:10.1103/PhysRevApplied.13.044040.