User:Bentplate84/sandbox

From Wikipedia, the free encyclopedia
Chest tube
ICD-9-CM34.04
MeSHD013907
Size of Chest Tube:
Adult or Teen Male = 28–32 Fr
Pp Adult or Teen Female = 28 Fr
Child = 18 Fr
Newborn = 12–14 Fr
[1]

A chest tube (chest drain, thoracic catheter, tube thoracostomy, or intercostal drain) is a flexible plastic tube that is inserted through the chest wall and into the pleural space or mediastinum. It is used to remove air (pneumothorax[2]) or fluid (pleural effusion, blood, chyle), or pus (empyema) from the intrathoracic space. It is also known as a Bülau drain or an intercostal catheter.

The concept of chest drainage was first advocated by Hippocrates when he described the treatment of empyema by means of incision, cautery, and insertion of metal tubes.[3] However, the technique was not widely used until the influenza epidemic of 1917 to drain post-pneumonic empyema.[4] The use of chest tubes in postoperative thoracic care was reported in 1922,[5] and they were regularly used post-thoracotomy in World War II, though they were not routinely used for emergency tube thoracostomy following acute trauma until the Korean War.[6]

Characteristics[edit]

Chest Tube Drainage Holes
Cross-Section of a Channel Drain

Chest tubes are commonly made from clear plastics like PVC and soft silicone. Chest tubes are made in a range of sizes measured by their external diameter from 6 Fr to 40 Fr. Chest tubes, like most catheters, a measured in French catheter scale. For adults, 20 Fr to 40 Fr (5 to 11mm internal diameter) are commonly used, and 6 Fr to 26 Fr for children. Conventional chest tubes tubes feature multiple drainage fenestrations in the section of the tube which resides inside the patient, as well as distance markers along the length of the tube, and a radiopaque stripe which is interrupted by the first drainage hole.[6] Chest tubes are also provided in right angle, trocar, flared, and tapered configurations for different drainage needs. As well, some chest tubes are coated with heparin to help prevent thrombus formation, though the clinical impact of this is disputed.[7]

Channel style chest drains, also called Blake drains, are so-called silastic drains made of silicone and feature open flutes that reside inside the patient. Drainage is thought to be achieved by capillary action, allowing the fluids to travel through the open grooves into a closed cross section, which contains the fluid and allows it to be suctioned through the tube.[8] These chest tubes are more expensive than conventional ones, but are theoretically less painful, and drainage with these chest tubes has been proven to be clinically adequate for cardiac surgery drainage.[9]

Chest drainage canister[edit]

Drainage Canisters

A chest drainage canister device is typically used to collect chest drainage (air, blood, effusions). Most commonly, drainage canisters use three chambers which are based on the three-bottle system. The first chamber allows fluid that is drained from the chest to be collected. The second chamber functions as a "water seal," which acts as a one-way valve, allowing gas to escape but not reenter the chest. Air bubbling through the water seal chamber is usual when the patient coughs or exhales but may indicate, if continual, a pleural or system leak that should be evaluated critically. It can also indicate a leak of air from the lung. The third chamber is the suction control chamber. The height of the water in this chamber regulates the negative pressure applied to the system. A gentle bubbling through the water column minimizes evaporation of the fluid and indicates that the suction is being regulated to the height of the water column. In this way, increased wall suction does not increase the negative pressure of the system. Newer drainage canisters eliminate the water seal using a mechanical one-way valve, and some also use a mechanical regulator to regulate the suction pressure. Systems which employ both these are dubbed "dry" systems, whereas systems that retain the water seal but use a mechanical regulator are called "wet-dry" systems. Systems which use a water seal and water column regulator are called "wet" systems. Dry systems are advantageous as tip-overs of wet systems can spill and mix with blood, mandating the replacement of the canister. Even newer systems are smaller and more ambulatory so the patient can be sent home for drainage if indicated.[6]

Indications[edit]

Left-sided pneumothorax (right side of image) on CT scan of the chest with chest tube in place.

Contraindications[edit]

Contraindications to chest tube placement include refractory coagulopathy and presence of a diaphragmatic hernia, as well as hepatic hydrothorax.[10] Additional contraindications include scarring in the pleural space (adhesions).

Technique[edit]

Tube thoracostomy[edit]

The insertion technique for emergent pleural drainage is described in detail in an article of the NEJM.[11] The free end of the tube is usually attached to an underwater seal, below the level of the chest. This allows the air or fluid to escape from the pleural space, and prevents anything returning to the chest. Alternatively, the tube can be attached to a flutter valve. This allows patients with pneumothorax to remain more mobile.

British Thoracic Society recommends the tube is inserted in an area described as the "safe zone", a region bordered by: the lateral border of pectoralis major, a horizontal line inferior to the axilla, the anterior border of latissimus dorsi and a horizontal line superior to the nipple.[12] More specifically, the tube is inserted into the 5th intercostal space slightly anterior to the mid axillary line.[13]

Chest tubes are usually inserted under local anesthesia. The skin over the area of insertion is first cleansed with antiseptic solution, such as iodine, before sterile drapes are placed around the area. The local anesthetic is injected into the skin and down to the muscle, and after the area is numb a small incision is made in the skin and a passage made through the skin and muscle into the chest. The tube is placed through this passage. If necessary, patients may be given additional analgesics for the procedure. Once the tube is in place it is sutured to the skin to prevent it falling out and a dressing applied to the area. Once the drain is in place, a chest radiograph will be taken to check the location of the drain. The tube stays in for as long as there is air or fluid to be removed, or risk of air gathering.

Chest tubes can also be placed using a trocar, which is a pointed metallic bar used to guide the tube through the chest wall. This method is less popular due to an increased risk of iatrogenic lung injury. Placement using the Seldinger technique, in which a blunt guidewire is passed through a needle (over which the chest tube is then inserted) has been described.

Postoperative drainage[edit]

The placement technique for postoperative drainage (e.g. cardiac surgery) differs from the technique used for emergent situations. At the completion of open cardiac procedures, chest tubes are placed through separate stab incisions, typically near the inferior aspect of the sternotomy incision. In some instances multiple drains may be used to drain the mediastinal and pericardial spaces. If necessary, a pleural chest tube may be placed in the patient's pleural space. The drainage holes are positioned inside the patient, and the chest tube is passed out through the incision. Once the tube is in place, it is sutured to the skin to prevent movement. The chest tube is then connected to the drainage canister using additional tubing and connectors, and connected to a suction source, often regulated to -20cm of water.[8]

Chest tube management[edit]

Chest tubes should be kept free of dependent loops, kinks, and obstructions which may prevent drainage.[14] In general, chest tubes are not clamped except during insertion, removal, or when diagnosing air leaks.

When a chest tube is inserted for whatever reason, maintaining patency is critical to avoid complications.[15] Manual manipulation, often called milking, stripping, fan folding, or tapping, of chest tubes is commonly performed to clear chest tube obstructions. No conclusive evidence has demonstrated that any of these techniques are more effective than the others, and no method has shown to improve chest tube drainage.[16] Chest tube manipulation has proved to increase negative pressure, which may be dangerous, and painful to the patient.[16] For these reasons, many hospitals do not allow these types of manual tube manipulations.[17]

Internal chest tube clearing can be performed to clear clots that form in the chest tubes using an open or closed technique. Open chest tube clearing involves breaking the sterile environment separating the chest tube from the drainage canister tubing. The internal lumen may then be flushed with saline,[6] or a suction catheter may be inserted inside the chest tube and suction used to clear the obstructions.[15] Closed chest tube clearing is performed using specially designed drainage systems. These systems use a magnetically driven wire loop to clear the clots that form inside the chest tube.[18]

Complications[edit]

Major insertion complications include hemorrhage, infection, and reexpansion pulmonary edema. Injury to the liver, spleen or diaphragm is possible if the tube is placed inferior to the pleural cavity. Injuries to the thoracic aorta and heart can also occur.[6]

Minor complications include a subcutaneous hematoma or seroma, anxiety, shortness of breath (dyspnea), and cough (after removing large volume of fluid). In most cases, the chest tube related pain goes away after the chest tube is removed, however, chronic pain related to chest tube induced scarring of the intercostal space is not uncommon.

Subcutaneous emphysema indicates backpressure created by a clogged drain or insufficient negative pressure.

Chest tube clogging[edit]

The most frequent complication associated with chest tubes is chest tube clogging, which is commonly caused by thrombus formation inside the chest tube, and can cause major subsequent complications.[19] After cardiac surgery, chest tube clogging has been observed in 36% of patients, and is significantly associated with increased rates of atrial fibrillation and renal failure. Since a portion of the chest tube is inside the patient, 86% of the time chest tube clogging goes unobserved. [20] In the setting of bleeding, chest tube clogging can cause pericardial tamponade, decreased cardiac output, and even death.[21] In the presence of air production, chest tube clogging can cause tension pneumothorax, and in the setting of infection, empyema.

To reduce the potential for clogging, surgeons often employ larger diameter tubes, which can contribute to chest tube related pain, though these too can clog.[17] Chest tube clogging in channel style drains has also caused life-threatening complications when bleeding in the chest goes unrecognized because of an occluded drain.[22]

References[edit]

  1. ^ http://apps.med.buffalo.edu/procedures/chesttube.asp?p=7
  2. ^ Noppen, M. (2002). "Manual Aspiration versus Chest Tube Drainage in First Episodes of Primary Spontaneous Pneumothorax: A Multicenter, Prospective, Randomized Pilot Study". American Journal of Respiratory and Critical Care Medicine. 165 (9): 1240–1244. doi:10.1164/rccm.200111-078OC. ISSN 1073-449X. PMID 11991872.
  3. ^ Hippocrates (1847). Genuine Works of Hippocrates. Sydenham Society.
  4. ^ Graham, EA (1918). "Open Pneumothorax: Its relation to the treatment of empyema". Am J Med Sci. 156: 839–871. doi:10.1097/00000441-191812000-00007. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Lilienthal, H (1922). "Resection of the lung for supportive infections with a report based on 31 consecutive operative cases in which resection was done or intended". Ann Surg. 75 (3): 257–320. doi:10.1097/00000658-192203000-00001. PMC 1399898. PMID 17864604.
  6. ^ a b c d e Miller, K S (NaN undefined NaN). "Chest tubes. Indications, technique, management and complications". Chest Journal. 91 (2): 258–264. doi:10.1378/chest.91.2.258. PMID 3542404. {{cite journal}}: Check date values in: |date= (help)
  7. ^ Kumar, P.; McKee, D.; Grant, M.; Pepper, J. (1997). "Phosphatidylcholine coated chest drains: are they better than conventional drains after open heart surgery?". European Journal of Cardio-thoracic Surgery. 11 (4): 769–733. doi:10.1016/S1010-7940(96)01145-1. PMID 9151051.{{cite journal}}: CS1 maint: date and year (link)
  8. ^ a b Obney, James A.; Barnes, Mary J.; Lisagor, Philip G.; Cohen, David J. (2000). "A method for mediastinal drainage after cardiac procedures using small silastic drains". The Annals of Thoracic Surgery. 70 (3): 1109–110. doi:10.1016/S0003-4975(00)01800-2. PMID 11016389.{{cite journal}}: CS1 maint: date and year (link)
  9. ^ Frankel, T. L. (NaN undefined NaN). "Silastic Drains vs Conventional Chest Tubes After Coronary Artery Bypass". Chest. 124 (1): 108–113. doi:10.1378/chest.124.1.108. PMID 12853511. {{cite journal}}: Check date values in: |date= (help)
  10. ^ Runyon BA, Greenblatt M, Ming RH (July 1986). "Hepatic hydrothorax is a relative contraindication to chest tube insertion". The American Journal of Gastroenterology. 81 (7): 566–7. PMID 3717119.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  11. ^ Dev SP, Nascimiento B, Simone C, Chien V (October 2007). "Videos in clinical medicine. Chest-tube insertion". N. Engl. J. Med. 357 (15): e15. doi:10.1056/NEJMvcm071974. PMID 17928590.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)
  12. ^ Laws, D (NaN undefined NaN). "BTS guidelines for the insertion of a chest drain". Thorax. 58 (90002): 53ii–59. doi:10.1136/thorax.58.suppl_2.ii53. PMC 1766017. PMID 12728150. {{cite journal}}: Check date values in: |date= (help)
  13. ^ http://www.up.ac.za/academic/medicine/anatomy/current/ecp/ecpst05e.html
  14. ^ Schmelz, JO; Johnson, D.; Norton, JM; Andrews, M.; Gordon, PA (1999 Sep). "Effects of position of chest drainage tube on volume drained and pressure". American Journal of Critical Care : An Official Publication, American Association of Critical-Care Nurses. 8 (5): 319–23. doi:10.4037/ajcc1999.8.5.319. PMID 10467469. {{cite journal}}: Check date values in: |date= (help)
  15. ^ a b Halejian, B. A.; Badach, M. J.; Trilles, F. (1988 Dec). "Maintaining chest tube patency". Surgery, Gynecology & Obstetrics. 167 (6): 521. PMID 3187876. {{cite journal}}: Check date values in: |date= (help)
  16. ^ a b Wallen, Margaret A.; Morrison, Anne L.; Gillies, Donna; O'Riordan, Elizabeth; Bridge, Catherine; Stoddart, Frances (2002). "Mediastinal chest drain clearance for cardiac surgery". The Cochrane Library. 2021 (3): 2–27. doi:10.1002/14651858.CD003042.pub2. PMC 8094876. PMID 15495040. {{cite journal}}: Check date values in: |year= / |date= mismatch (help)
  17. ^ a b Shalli S, Saeed D, Fukamachi K; et al. (2009). "Chest tube selection in cardiac and thoracic surgery: a survey of chest tube-related complications and their management". J Card Surg. 24 (5): 503–9. doi:10.1111/j.1540-8191.2009.00905.x. PMID 19740284. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  18. ^ Shiose, A.; Takaseya, T.; Fumoto, H.; Arakawa, Y.; Horai, T.; Boyle, E. M.; Gillinov, A. M.; Fukamachi, K. (NaN undefined NaN). "Improved drainage with active chest tube clearance". Interactive CardioVascular and Thoracic Surgery. 10 (5): 685–688. doi:10.1510/icvts.2009.229393. PMID 20179137. {{cite journal}}: Check date values in: |date= (help)
  19. ^ Hunter, Steven; Angelini, Gianni D. (1993). "Phosphatidylcholine-coated chest tubes improve drainage after open heart operation". The Annals of Thoracic Surgery. 56 (6): 1339–1342. doi:10.1016/0003-4975(93)90678-B. PMID 8267433.{{cite journal}}: CS1 maint: date and year (link)
  20. ^ Karimov, J. H.; Gillinov, A. M.; Schenck, L.; Cook, M.; Kosty Sweeney, D.; Boyle, E. M.; Fukamachi, K. (21 March 2013). "Incidence of chest tube clogging after cardiac surgery: a single-centre prospective observational study". European Journal of Cardio-Thoracic Surgery. 44 (6): 1029–1036. doi:10.1093/ejcts/ezt140. PMID 23520232.
  21. ^ Dixon, Barry (2012). "The association of blood transfusion with mortality after cardiac surgery: cause or confounding?". Transfusion: 1–9. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  22. ^ Clark G, Licker M, Bertin D, Spiliopoulos A (March 2007). "Small size new silastic drains: life-threatening hypovolemic shock after thoracic surgery associated with a non-functioning chest tube". Eur J Cardiothorac Surg. 31 (3): 566–8. doi:10.1016/j.ejcts.2006.12.010. PMID 17215136.{{cite journal}}: CS1 maint: date and year (link) CS1 maint: multiple names: authors list (link)

Further reading[edit]


Category:Emergency medical procedures Category:Intensive care medicine Category:Pulmonology