User:Alan Cone/cerevisiaepombe

From Wikipedia, the free encyclopedia

Genetic Makeup[edit]

Attribute S. cerevisiae S. pombe
Sequenced genome Yes[1][2] Yes[3]
Chromosomes 16[1][2] 3[3]
Number of Genes 5,570 - 5,651[1][2] 4,824 - 4,940[3]
Genes with Introns 5%[3] 43%[3]
Duplicated Genes Many[3] Few[3]
Centromeres Small[4][2] Elongated with Repeats[4][3]

Cell Cycle[edit]

Attribute S. cerevisiae S. pombe
Mitotic Spindle Present From G1/S to Division[5] Only in M Phase[5]
Chromosome Condensation Little[5] Significant[5]
Cell Division Regulation G1 to S[5][6] G1 to S and G2 to M[5][6]
Generation Time 1.25-2 hours[6][2] 2-4 hours[6][3]
Synchronize Cells Based on Cell Cycle Phase Difficult/Based on Bud Emergence[6] Centrifuge as size indicates age[6]

Transcription and Translation[edit]

Attribute S. cerevisiae S. pombe
Promoter Region Location 10 bp upstream[6] 25-35 bp upstream[6]
Mammalian Promoter Active No[6] Yes including HIV1, SV40, and CaMV35S[6]
Yeast Artificial Chromosome Yes[7] Yes[8][9]
Human gene expression Yes Yes[10]
Human gene substitution Limited, usually requires alterations Yes[11]
Structure of Small Nuclear U2 and U6 RNA Unique[6] Similar to higher eukaryotes[12][13]
RNA 5' Splicing Site Unique[6] Like Mammals[6]
RNA 3' End Formation AT-Rich; lack AAUAAA motif[6] AT-Rich; lack AAUAAA motif[6]
Alternative Splicing Unique to S. cerevisiae[14] Similar to higher eukaryotes[14][15]
Codon usage Similar to Fungi[16] Similar to Fungi[16]
Mammalian-like SRP RNAs No Yes[17]
RNAi Limited Present[18], including microRNA and machinery[19]
Post-translational Processing Limited Yes, well-formed Golgi Apparatus, terminal glucose and prenylation modifications

Gene Expression and Signaling[edit]

Attribute S. cerevisiae S. pombe
Inducible Gene Expression Tight control, in presence of galactose using GAL4 promoter Tight control, delayed repression (16 hours) with thiamine using nmt promoter
Mating Signal usage to Enable Secretion Yes No
Human Protein Similarity Many Many homologues[3], arguably closer in structure and function, including cdc2[11] and p53
Drug-Metabolizing Enzyme Expression (cytochrome P450) Yes, 1% of Cell[6] Yes[20][21][22], >10% of Cell[6]
Transformed Membrane Protein Expression Little 1-2% of membrane, 1mg from 1L of culture
Heat Shock Response HSF constituitively bound to HSE HSF binds to HSE upon heat shock
Recognition of ER retention KDEL signal No Yes
Classical Nuclear Localization Signal Recognition Yes Yes
PY Nuclear Localization Signal Recognition Limited Limited studies, Possibility
Foreign Signal Sequence Recognition Limited Yes
Isolate Recessive Mutations Convert to Haploid Separate based on phenotype (already haploid)

Properties[edit]

Attribute S. cerevisiae S. pombe
Age Determination Difficult Size, larger size is older organism
G-protein coupled receptor Limited Yes, can perpetuate signals
Sexes a and alpha[23] h+, h-, and h90[24][25]
Switching Sex Both[23] h90 only[26]
Mating Induction Rich Medium Nitrogen Starvation
Native State Diploid[6] Haploid[6]
Mammalian-like apoptosis mechanism No[27] Yes[28][27]
Cell Fusion With Mouse Cells Possible No[6] Yes[6]
Mammalian-like actin No Yes
Growth on Galactose Yes No
Growth on malic acid No Yes
Uptake of mevalonic acid No Yes
Inositol required for growth No Yes
Resistance against EtOH Yes Limited
Resistance Against Heat No Yes
Resistance against osmotic stress No Yes

References[edit]

  1. ^ a b c http://downloads.yeastgenome.org/sequence/
  2. ^ a b c d e Goffeau, A., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., . . . Jacq, C. (1996). Life with 6000 genes. Science, 274(5287), 546-567. doi:10.1126/science.274.5287.546
  3. ^ a b c d e f g h i j Wood, V., Baker, S., Gloux, S., Basham, D., Bowman, S., Brooks, K., . . . Dréano, S. (2002). The genome sequence of schizosaccharomyces pombe. Nature, 415(6874), 871-880. doi:10.1038/nature724
  4. ^ a b Polizzi, C. M. (1990). Analysis of centromere regions from the fission yeast schizosaccharomyces pombe. ProQuest, UMI Dissertations Publishing).
  5. ^ a b c d e f Davis, L., & Smith, G. R. (2001). Meiotic recombination and chromosome segregation in schizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8395-8402. doi:10.1073/pnas.121005598
  6. ^ a b c d e f g h i j k l m n o p q r s t u Giga-Hama, Y., & Kumagai, H. (1997). Foreign gene expression in fission yeast: Schizosaccharomyces pombe. New York: Springer.
  7. ^ Murray, A. W. & Szostak, J. W. E-Resource Login. Nature (1983).
  8. ^ Hahnenberger, K. M., Baum, M. P., Polizzi, C. M., Carbon, J., & Clarke, L. (1989). Construction of functional artificial minichromosomes in the fission yeast schizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 86(2), 577-581. doi:10.1073/pnas.86.2.577
  9. ^ Complete coverage of the schizosaccharomyces pombe genome in yeast artificial chromosomes. (1992). Nature Genetics, 1(4), 273-277. doi:10.1038/ng0792-273
  10. ^ Young, D. J., Nimmo, E. R., & Allshire, R. C. (1998). A schizosaccharomyces pombe artificial chromosome large DNA cloning system. Nucleic Acids Research, 26(22), 5052-5060. doi:10.1093/nar/26.22.5052
  11. ^ a b Lee MG, Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 1987; 327:31-35
  12. ^ Brennwald P, Porter G, Wise JA. U2 small nuclear RNA is remarkably conserved between Schizosaccharomyces pombe and mammals. Mol Cell Biol 1988: 8:5575-5580
  13. ^ Porter G, Brennwald P, Wise JA. U1 small nuclear RNA from Schizosaccharomyces pombe has unique and conserved features and is encoded by an essential single-copy gene. Mol Cell Biol 1990; 10:2874-2881
  14. ^ a b Guthrie L, Riedel N, Parker R et al. Genetic analysis of snRNAs and RNA processing in yeast. In: Hicks J, ed. Yeast Cell Biology Liss, New York 1986; 301-321
  15. ^ Mount SM. A catalogue of splice junction sequences. Nucleic Acid Res 1982; 10:459-472
  16. ^ a b Forsburg SL. Codon usage table for Schizosaccharomyces pombe. Yeast 1994; 10:1045-1047
  17. ^ Hughes JM, Koninngs DAM, Cesaraeni G. The yeast homologue of U3 snRNA. EMBO J 1987; 6:2145-2155
  18. ^ Reinhart, B. J., & Bartel, D. P. (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297(5588), 1831-1831. doi:10.1126/science.1077183
  19. ^ Sigova, A., Rhind, N., & Zamore, P. D. (2004). A single argonaute protein mediates both transcriptional and posttranscriptional silencing in schizosaccharomyces pombe. Genes & Development, 18(19), 2359-2367. doi:10.1101/gad.1218004
  20. ^ Hakki, T., Hübel, K., Waldmann, H., & Bernhardt, R. (2011). The development of a whole-cell based medium throughput screening system for the discovery of human aldosterone synthase (CYP11B2) inhibitors: Old drugs disclose new applications for the therapy of congestive heart failure, myocardial fibrosis and hypertension. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 120-128. doi:10.1016/j.jsbmb.2010.12.011
  21. ^ Tin, M. K., Hakki, T., & Bernhardt, R. (2011). Fission yeast schizosaccharomyces pombe as a new system for the investigation of corticosterone methyloxidase deficiency-causing mutations. The Journal of Steroid Biochemistry and Molecular Biology, 124(1-2), 31-37. doi:10.1016/j.jsbmb.2011.01.002
  22. ^ Hakki, T., & Bernhardt, R. (2014). Development and evaluation of a whole-cell system for the directed evolution of human cytochromes P450 in recombinant fission yeast schizosaccharomyces pombe. Journal of Molecular Catalysis B: Enzymatic, 103, 67-71. doi:10.1016/j.molcatb.2013.08.011
  23. ^ a b Thorner J. Pheromonal regulation of development in Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 1981:143-180
  24. ^ Imai Y, Yamamoto M. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Gene & Dev 1994; 8:328-338
  25. ^ Davy J. Isolation and quantitation of M-factor, a diffusible mating factor from fission yeast Schizosaccharomyces pombe. Yeast 1991; 7:357-366
  26. ^ Beach DH. Cell type switching by DNA transcription in fission yeast. Nature 1983; 305:682-687
  27. ^ a b B Ink, M Zörnig, B Baum, N Hajibagheri, C James, T Chittenden, & G Evan. (1997). Human bak induces cell death in schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. Molecular and Cellular Biology, 17(5), 2468-2474.
  28. ^ Jürgensmeier, J. M., Krajewski, S., Armstrong, R. C., Wilson, G. M., Oltersdorf, T., Fritz, L. C., . . . Ottilie, S. (1997). Bax- and bak-induced cell death in the fission yeast schizosaccharomyces pombe. Molecular Biology of the Cell, 8(2), 325-339.