Talk:PLEKHA7

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Untitled[edit]

"Mayo Clinic researchers find new code that makes reprogramming of cancer cells possible"

... Their theory turned out to be true, but what was regulating this behavior was still unknown. To answer this, the researchers studied a new protein called PLEKHA7, which associates with E-cadherin and p120 only at the top, or the "apical" part of normal polarized epithelial cells. The investigators discovered that PLEKHA7 maintains the normal state of the cells, via a set of miRNAs, by tethering the microprocessor to E-cadherin and p120. In this state, E-cadherin and p120 exert their good tumor suppressor sides.

However, "when this apical adhesion complex was disrupted after loss of PLEKHA7, this set of miRNAs was misregulated, and the E-cadherin and p120 switched sides to become oncogenic," Dr. Anastasiadis says.

"We believe that loss of the apical PLEKHA7-microprocessor complex is an early and somewhat universal event in cancer," he adds. "In the vast majority of human tumor samples we examined, this apical structure is absent, although E-cadherin and p120 are still present. This produces the equivalent of a speeding car that has a lot of gas (the bad p120) and no brakes (the PLEKHA7-microprocessor complex).