Aconitate decarboxylase

From Wikipedia, the free encyclopedia
aconitate decarboxylase
Identifiers
EC no.4.1.1.6
CAS no.9025-01-8
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

The enzyme aconitate decarboxylase (EC 4.1.1.6) (i.e., ACOD1, also termed cis-aconitate decarboxylase, immune-responsive gene 1, immune response gene 1, and IRK1[1][2]) is a protein enzyme that in humans is encoded by the decarboxylase 1 aconitate decarboxylase 1 gene located at position 22.3 on the long arm (i.e., p-arm) of chromosome 13.[3] ACOD1 catalyzes the following reversible (i.e., runs in both directions, as indicated by ) decarboxylation chemical reaction:[4][5][6]

cis-aconitate itaconate + CO2

Hence, ACOD1 converts cis-aconitate into two products, itaconate and CO2 or itaconate and CO2 into one product, aconitate.

ACOD1 belongs to the family of lyases, specifically the carboxy-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is cis-aconitate carboxy-lyase (itaconate-forming). Other names once in common use for this enzyme class include CAD and cis-aconitate carboxy-lyase. ACOD1 participates in c5-branched dibasic acid metabolism.[7]

Ustilago maydis (a species of Ustilago fungi) converts cis-aconitate to its thermodynamically favored product, trans-aconitate, by the enzyme aconitate delta-isomerase (i.e., Adi1). The trans-aconitate product is decarboxylated to itaconate by trans-aconitate decarboxylase (i.e., Tad1).[8] This Adi followed by Tad 1 enzymatic metabolic pathway is:

cis-aconitate trans-itaconate itaconate + CO2

Trans-aconitate decarboxylase does not metabolize cis-aconitate to itaconate.[8] (The genes for aconitate delta-isomerase and trans-aconitate decarboxylase have been reported in several types of fungi hut not in other organisms, including humand, and are classified as provisional, i.e., accepted provisional to further studies.)

References[edit]

  1. ^ Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M (February 2020). "Regulation of succinate dehydrogenase and role of succinate in cancer". Seminars in Cell & Developmental Biology. 98: 4–14. doi:10.1016/j.semcdb.2019.04.013. PMID 31039394.
  2. ^ Singh S, Singh PK, Jha A, Naik P, Joseph J, Giri S, Kumar A (May 2021). "Integrative metabolomics and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial infection". Cell Reports. Medicine. 2 (5): 100277. doi:10.1016/j.xcrm.2021.100277. PMC 8149370. PMID 34095879.
  3. ^ Liu X, Zhang L, Wu XP, Zhu XL, Pan LP, Li T, Yan BY, Xu AQ, Li H, Liu Y (July 2017). "Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle". Journal of Medical Virology. 89 (7): 1215–1223. doi:10.1002/jmv.24756. PMID 28004399.
  4. ^ Peace CG, O'Neill LA (January 2022). "The role of itaconate in host defense and inflammation". The Journal of Clinical Investigation. 132 (2). doi:10.1172/JCI148548. PMC 8759771. PMID 35040439.
  5. ^ Wu KK (July 2023). "Extracellular Succinate: A Physiological Messenger and a Pathological Trigger". International Journal of Molecular Sciences. 24 (13): 11165. doi:10.3390/ijms241311165. PMC 10342291. PMID 37446354.
  6. ^ Elkasaby T, Hanh DD, Kawaguchi H, Kondo A, Ogino C (August 2023). "Effect of different metabolic pathways on itaconic acid production in engineered Corynebacterium glutamicum". Journal of Bioscience and Bioengineering. 136 (2): 109–116. doi:10.1016/j.jbiosc.2023.05.006. PMID 37328405.
  7. ^ Nie Z, Wang L, Zhao P, Wang Z, Shi Q, Liu H (November 2023). "Metabolomics reveals the impact of nitrogen combined with the zinc supply on zinc availability in calcareous soil via root exudates of winter wheat (Triticum aestivum)". Plant Physiology and Biochemistry : PPB. 204: 108069. doi:10.1016/j.plaphy.2023.108069. PMID 37852066.
  8. ^ a b Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (January 2016). "Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate". Microbial Biotechnology. 9 (1): 116–26. doi:10.1111/1751-7915.12329. PMC 4720413. PMID 26639528.
  • BENTLEY R, THIESSEN CP (1957). "Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase". J. Biol. Chem. 226 (2): 703–20. PMID 13438855.