Generating functions
[edit]
The following formulas are known:
[1][2]
[3][4]
[5][6]
[7][8]
[9]
[10][11]
[12][13]
[14][15]
[16][17]
[18]
[19][20]
Let χ(n) be the characteristic function of the squares:
[21][22]
[23]
A) × C) = F) × G) = 1.
A) × E) = B1.
E) × D0) = D1.
A) × G) = H.
A) × H) = I.
A) × I) = J.
D0) × H) = J.
A) × F) = K.
A) × L) = M.
We have the series and Euler product formulas for ζ(s):
and thus
Let
From the Euler product
i.e. a(n) = μ(n), or
Let A) times B) be Then giving
Setting k to 0 and 1 gives the special cases
Let B1) times C) be Then
Consider
i.e.
Now consider
i.e.
Since A) times C) is one,
- ^ Hardy & Wright, § 17.2
- ^ Titchmarsh, § 1.1
- ^ Hardy & Wright, Thm. 287
- ^ Titchmarsh, Eq. 1.1.4
- ^ Hardy & Wright, Th. 291
- ^ Titchmarsh, Eq. 1.3.1
- ^ Hardy & Wright, Thm. 289
- ^ Titchmarsh, Eq. 1.2.1
- ^ Hardy & Wright, Thm. 290
- ^ Hardy & Wright, Thn. 288
- ^ Titchmarsh, Eq. 1.2.12
- ^ Hardy & Wright, Thm. 300
- ^ Titchmarsh, Eq. 1.2.11
- ^ Hardy & Wright, Th. 302
- ^ Titchmarsh, Eq. 1.2.7
- ^ Hardy & Wright, Thm. 301
- ^ Titchmarsh, Eq. 1.2.8
- ^ Titchmarsh, § 1.2.9
- ^ Hardy & Wright, Thm. 304
- ^ Titchmarsh, Eq. 1.2.10
- ^ Hardy & Wright, Thm. 294
- ^ Titchmarsh, Eq. 1.1.8
- ^ Hardy & Wright, Thm. 294