Jump to content

User:VebraScience/sandbox

From Wikipedia, the free encyclopedia

Studies to make the hardness of thermite welds to repair tracks have made improvements to the hardness to compare more to the original tracks while keeping its portable nature. [1]

References[edit]

  1. ^ Oo, Hein Zaw; Muangjunburee, Prapas (2023-03). "Improving microstructure and hardness of softening area at HAZ of thermite welding on rail running surface". Materials Today Communications. 34: 105485. doi:10.1016/j.mtcomm.2023.105485. {{cite journal}}: Check date values in: |date= (help)

[1]Thermite welding is one of the most common welding types due to its easy usage and accessibility. The usage of extra and material with small adjustments can change hardness of the weld.

[2]Changes in aluminum results in faster ignition and can balance out the stoichiometry. Expected to start more plugging of abandoned oil wells and have more eco-friendly power.

[3]Contains model for plugging empty oil wells. Increasing the concentration of the mixture increases heat generated to melt the model

[4]More investigations on changes of aluminum and effect. More aluminum increases reactivity but risks integrity.

[5]Simulates heat transfer in oil wells based on heat flux. Energy provided from thermite reaction nullifies the need for production casing.

[6]Thermite reacts better in a cylinder due to geometrical shape. Examined conditions lead to higher heat flux that can be used for space crafts

  1. ^ Oo, Hein Zaw; Muangjunburee, Prapas (2023-03). "Improving microstructure and hardness of softening area at HAZ of thermite welding on rail running surface". Materials Today Communications. 34: 105485. doi:10.1016/j.mtcomm.2023.105485. {{cite journal}}: Check date values in: |date= (help)
  2. ^ De Souza, Kesiany M.; de Lemos, Marcelo J.S. (2023-05). "Advanced one-dimensional modeling of thermite reaction for thermal plug and abandonment of oil wells". International Journal of Heat and Mass Transfer. 205: 123913. doi:10.1016/j.ijheatmasstransfer.2023.123913. {{cite journal}}: Check date values in: |date= (help)
  3. ^ Pena, Fabrício J.C.; de Souza, Kesiany M.; de Lemos, Marcelo J.S. (2023-12). "Thermal behavior of aluminothermic thermite reaction for application in thermal sealing of oil wells". International Communications in Heat and Mass Transfer. 149: 107113. doi:10.1016/j.icheatmasstransfer.2023.107113. {{cite journal}}: Check date values in: |date= (help)
  4. ^ De Souza, Kesiany M.; de Lemos, Marcelo J.S.; Ribeiro, Roberta dos R.; Marin, Ana M.G.; Martins, Paulo G.C.; Gouvêa, Leonardo H. (2024-03). "Experimental investigation of Al-Fe2O3 thermite reactions for thermal plug and abandonment of oil wells". Geoenergy Science and Engineering. 234: 212620. doi:10.1016/j.geoen.2023.212620. {{cite journal}}: Check date values in: |date= (help)
  5. ^ Dourado da Silva, Rodrigo G.; Magalhães, Elisan S.; Pires, Luis Carlos M. (2023-11). "Estimation of thermal input in thermite reaction for innovative wellbore plugging & abandonment techniques". International Communications in Heat and Mass Transfer. 148: 107071. doi:10.1016/j.icheatmasstransfer.2023.107071. {{cite journal}}: Check date values in: |date= (help)
  6. ^ Finazzi, A.; Finocchi, P.; Carlotti, S.; Maggi, F. (2024-03). "Thermite-for-Demise (T4D): Experimental analysis of heat transfer principles and preliminary sizing of an application". International Journal of Heat and Mass Transfer. 220: 124957. doi:10.1016/j.ijheatmasstransfer.2023.124957. {{cite journal}}: Check date values in: |date= (help)