User:Sridh120/sandbox

From Wikipedia, the free encyclopedia

Research[edit]

Discovery[edit]

The plastisphere was first described by a team of three scientists, Dr. Linda Amaral-Zettler from the Marine Biological Laboratory, Dr. Tracy Mincer from Woods Hole Oceanographic Institution and Dr. Erik Zettler from Sea Education Association.[1][2] They collected plastic samples during research trips to study how the microorganisms function and alter the ecosystem. They analyzed plastic fragments collected in nets from multiple locations within the Atlantic Ocean.[2] The researchers used a combination of scanning electron microscopy and DNA sequencing to identify the distinct microbial community composition of the plastisphere.[2] Among the most notable findings were "pit formers," crack and pit forming organisms that provide evidence of biodegradation.[2][3] Moreover, pit formers may also have the potential to break down hydrocarbons.[2] In their analysis, the researchers also found members of the genus Vibrio, a genus which includes the bacteria that cause cholera and other gastrointestinal ailments.[4] Some species of Vibrio can glow, and it is hypothesized that this attracts fish that eat the organisms colonizing the plastic, which then feed from the stomachs of the fish.[5]

Diversity of the Plastisphere[edit]

Large scale sequencing studies have found alpha diversities to be lower in the plastisphere relative to surrounding soil samples due to a decrease in species richness in the plastisphere.[6][7][8][9] Polymer film fragments affect microbes in different ways, leading to mixed effects on microbial growth rates in the plastisphere.[6][9][10] Certain polymer degrading bacteria release toxic byproducts as a result of the degradation of the plant fragment, serving as a deterrent to the colonization of the plastisphere by susceptible species.[6] Phylogenetic diversity is also decreased in the plastisphere relative to nearby soil samples.[6]

The bacterial and microbial communities in the plastisphere are significantly different from those found in surrounding soil samples, creating a new ecological niche within the ecosystem.[6][11][12] The specific growth of bacteria caused by film fragments is a primary cause for the creation of a unique bacterial community.[6][13] Changes in bacterial community composition over time in the plastisphere have also been shown to drive changes in surrounding land.[6][9][14]

In another study which looked at the factors influencing the diversity of the plastisphere, the researchers found that the highest degree of unique microorganisms tended to favor plastic pieces that were blue.[15]

Plastisphere Taxonomy[edit]

The growth of specific bacteria in their plastisphere occurs because of the ability of certain bacteria to degrade polymers. Phyla of bacteria that have increased presences in the plastisphere relative to soil samples without plastic micro-fragments include Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes, and Proteobacteria.[6][16][17][18][19] Furthermore, bacteria of the order Rhizobiales, Rhodobacterales, and Sphingomonadales are enriched in the plastisphere.[6] Interactions within the unique bacterial community composition in the plastisphere influence local biogeochemical cycles and ecosystems’ food web interactions.

Plastisphere Community Metabolism[edit]

The metabolism of bacterial communities in the plastisphere are enhanced.[6] KEGG Pathway enrichment analyses of plastisphere samples have also demonstrated increases in genetic and environmental information processing, cellular process, and organismal systems.[6] Enhanced metabolic functions for communities in the plastisphere include nitrogen metabolism, insulin signaling pathways, bacterial secretion, organophosphorus compound metabolism, antioxidant metabolism, Vitamin B synthesis, chemotaxis, terpenoid quinone synthesis, sulfur metabolism, carbohydrate metabolism, herbicide degradation, fatty acid metabolism, amino acid metabolism, ketone body pathways, lipopolysaccharide synthesis, alcohol degradation, polycyclic aromatic hydrocarbon degradation, lipid metabolism, cofactor metabolism, cellular growth, cell motility, membrane transport, energy metabolism, and xenobiotics metabolism.[6][19][20][21]

Relationship to Carbon, Nitrogen, and Phosphorus Cycling[edit]

The presence of hydrocarbon degrading species in the plastisphere proposes a direct link between the plastisphere and the carbon cycle.[6][22][23] Metagenome analyses suggest that genes involved in Carbon degradation, Nitrogen fixation, organic Nitrogen conversion, ammonia oxidation, denitrification, inorganic Phosphorus solubilization, organic Phosphorus mineralization, and Phosphorus transporter production are enriched in the plastisphere, demonstrating the potential impact on biogeochemical cycles by the plastisphere.[6][24][25][26][27][28][29][30] Specific bacterial phyla present in the plastisphere due to biodegradation abilities but also play a role in Carbon, Nitrogen, and Phosphorus cycling include Proteobacteria and Bacteroidetes.[6][22][23][31][32] Specifically, some Carbon degrading bacteria are able to use plastics as a food source.[33][34]

Research in the South Pacific Ocean has investigated the plastisphere’s potential in CO2 and N2O contribution where fairly low greenhouse gas contributions by the plastisphere were noted but concluded that greenhouse gas contribution was dependent on the degree of nutrient concentration and the plastic type.[35]

Significance to Human Health[edit]

KEGG Pathway enrichment analyses of plastisphere samples suggest that sequences related to human disease are enriched in the plastisphere.[6] Cholera causing Vibrio cholerae, cancer pathways, and toxoplasmosis sequences are enriched in the plastisphere.[4][6] Pathogenic bacteria are sustained in the plastisphere in part due to the adsorption of organic pollutants onto biofilms and their usage as nutrition.[6][19][20] Current research also aims to identify the relationship between the plastisphere and respiratory viruses and whether the plastisphere affects viral persistence and survival in the environment.[36]

References[edit]

  1. ^ Zettler, Erik R.; Mincer, Tracy J.; Amaral-Zettler, Linda A. (2013-07-02). "Life in the "Plastisphere": Microbial Communities on Plastic Marine Debris". Environmental Science & Technology. 47 (13): 7137–7146. doi:10.1021/es401288x. ISSN 0013-936X.
  2. ^ a b c d e "Behold the 'Plastisphere' | Ocean Leadership". web.archive.org. 2015-11-19. Retrieved 2023-04-12.
  3. ^ Zettler, Erik; Amaral-Zettler, Linda; Mincer, Tracy. "Welcome to The Plastisphere: ocean-going microbes on vessels of plastic". The Conversation. Retrieved 2023-04-12.
  4. ^ a b "Scientists Discover Thriving Colonies of Microbes in Ocean 'Plastisphere'". https://www.whoi.edu/. Retrieved 2023-04-12. {{cite web}}: External link in |website= (help)
  5. ^ "Glowing Bugs May Lure Fish in the 'Plastisphere'". NBC News. Retrieved 2023-04-12.
  6. ^ a b c d e f g h i j k l m n o p q r Luo, Gongwen; Jin, Tuo; Zhang, Huiru; Peng, Jianwei; Zuo, Ning; Huang, Ying; Han, Yongliang; Tian, Chang; Yang, Yong; Peng, Kewei; Fei, Jiangchi (2022-01-15). "Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China". Journal of Hazardous Materials. 422: 126865. doi:10.1016/j.jhazmat.2021.126865. ISSN 0304-3894.
  7. ^ Zettler, Erik R.; Mincer, Tracy J.; Amaral-Zettler, Linda A. (2013-06-19). "Life in the "Plastisphere": Microbial Communities on Plastic Marine Debris". Environmental Science & Technology. 47 (13): 7137–7146. doi:10.1021/es401288x. ISSN 0013-936X.
  8. ^ Miao, Lingzhan; Wang, Peifang; Hou, Jun; Yao, Yu; Liu, Zhilin; Liu, Songqi; Li, Tengfei (2019-02). "Distinct community structure and microbial functions of biofilms colonizing microplastics". Science of The Total Environment. 650: 2395–2402. doi:10.1016/j.scitotenv.2018.09.378. ISSN 0048-9697. {{cite journal}}: Check date values in: |date= (help)
  9. ^ a b c Yang, Kai; Chen, Qing-Lin; Chen, Mo-Lian; Li, Hong-Zhe; Liao, Hu; Pu, Qiang; Zhu, Yong-Guan; Cui, Li (2020-08-19). "Temporal Dynamics of Antibiotic Resistome in the Plastisphere during Microbial Colonization". Environmental Science & Technology. 54 (18): 11322–11332. doi:10.1021/acs.est.0c04292. ISSN 0013-936X.
  10. ^ "Colonization Characteristics of Bacterial Communities on Plastic Debris Influenced by Environmental Factors and Polymer Types in the Haihe Estuary of Bohai Bay, China". dx.doi.org. Retrieved 2023-04-12.
  11. ^ Loeppmann, Sebastian; Blagodatskaya, Evgenia; Pausch, Johanna; Kuzyakov, Yakov (2016-01). "Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere". Soil Biology and Biochemistry. 92: 111–118. doi:10.1016/j.soilbio.2015.09.020. ISSN 0038-0717. {{cite journal}}: Check date values in: |date= (help)
  12. ^ Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas (2017-05-05). "Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events". Science Advances. 3 (5). doi:10.1126/sciadv.1602781. ISSN 2375-2548.
  13. ^ Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark (2014-09-23). "Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms". BMC Microbiology. 14 (1). doi:10.1186/s12866-014-0232-4. ISSN 1471-2180.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ Kettner, Marie Therese; Oberbeckmann, Sonja; Labrenz, Matthias; Grossart, Hans-Peter (2019-03-20). "The Eukaryotic Life on Microplastics in Brackish Ecosystems". Frontiers in Microbiology. 10. doi:10.3389/fmicb.2019.00538. ISSN 1664-302X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Wen, Bin; Liu, Jun-Heng; Zhang, Yuan; Zhang, Hao-Ran; Gao, Jian-Zhong; Chen, Zai-Zhong (2020-10). "Community structure and functional diversity of the plastisphere in aquaculture waters: Does plastic color matter?". Science of The Total Environment. 740: 140082. doi:10.1016/j.scitotenv.2020.140082. ISSN 0048-9697. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Qian, Haifeng; Zhang, Meng; Liu, Guangfu; Lu, Tao; Qu, Qian; Du, Benben; Pan, Xiangliang (2018-07-25). "Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility". Water, Air, & Soil Pollution. 229 (8). doi:10.1007/s11270-018-3916-9. ISSN 0049-6979.
  17. ^ Huang, Yi; Zhao, Yanran; Wang, Jie; Zhang, Mengjun; Jia, Weiqian; Qin, Xiao (2019-11). "LDPE microplastic films alter microbial community composition and enzymatic activities in soil". Environmental Pollution. 254: 112983. doi:10.1016/j.envpol.2019.112983. ISSN 0269-7491. {{cite journal}}: Check date values in: |date= (help)
  18. ^ Li, Yaying; Lin, Mi; Ni, Zhuobiao; Yuan, Zhihui; Liu, Weiqi; Ruan, Jujun; Tang, Yetao; Qiu, Rongliang (2020-03). "Ecological influences of the migration of micro resin particles from crushed waste printed circuit boards on the dumping soil". Journal of Hazardous Materials. 386: 121020. doi:10.1016/j.jhazmat.2019.121020. ISSN 0304-3894. {{cite journal}}: Check date values in: |date= (help)
  19. ^ a b c Debroas, Didier; Mone, Anne; Ter Halle, Alexandra (2017-12). "Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders". Science of The Total Environment. 599–600: 1222–1232. doi:10.1016/j.scitotenv.2017.05.059. ISSN 0048-9697. {{cite journal}}: Check date values in: |date= (help)
  20. ^ a b Oh, Mina; Yamada, Takuji; Hattori, Masahiro; Goto, Susumu; Kanehisa, Minoru (2007-10-16). "Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways". ChemInform. 38 (42). doi:10.1002/chin.200742215. ISSN 0931-7597.
  21. ^ Neis, Evelien; Dejong, Cornelis; Rensen, Sander (2015-04-16). "The Role of Microbial Amino Acid Metabolism in Host Metabolism". Nutrients. 7 (4): 2930–2946. doi:10.3390/nu7042930. ISSN 2072-6643.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  22. ^ a b Heylen, Kim; Gevers, Dirk; Vanparys, Bram; Wittebolle, Lieven; Geets, Joke; Boon, Nico; De Vos, Paul (2006-11). "The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers". Environmental Microbiology. 8 (11): 2012–2021. doi:10.1111/j.1462-2920.2006.01081.x. ISSN 1462-2912. {{cite journal}}: Check date values in: |date= (help)
  23. ^ a b Wolińska, Agnieszka; Kuźniar, Agnieszka; Zielenkiewicz, Urszula; Izak, Dariusz; Szafranek-Nakonieczna, Anna; Banach, Artur; Błaszczyk, Mieczysław (2017-10). "Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach". Applied Soil Ecology. 119: 128–137. doi:10.1016/j.apsoil.2017.06.009. ISSN 0929-1393. {{cite journal}}: Check date values in: |date= (help)
  24. ^ Upadhyay, Sudhir K.; Singh, Devendra P.; Saikia, Ratul (2009-08-22). "Genetic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Rhizospheric Soil of Wheat Under Saline Condition". Current Microbiology. 59 (5): 489–496. doi:10.1007/s00284-009-9464-1. ISSN 0343-8651.
  25. ^ Amaral-Zettler, Linda A.; Zettler, Erik R.; Mincer, Tracy J. (2020-01-14). "Ecology of the plastisphere". Nature Reviews Microbiology. 18 (3): 139–151. doi:10.1038/s41579-019-0308-0. ISSN 1740-1526.
  26. ^ Hayden, Helen L.; Drake, Judy; Imhof, Mark; Oxley, Andrew P.A.; Norng, Sorn; Mele, Pauline M. (2010-10). "The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia". Soil Biology and Biochemistry. 42 (10): 1774–1783. doi:10.1016/j.soilbio.2010.06.015. ISSN 0038-0717. {{cite journal}}: Check date values in: |date= (help)
  27. ^ Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. (2007), "Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria", First International Meeting on Microbial Phosphate Solubilization, Dordrecht: Springer Netherlands, pp. 15–21, ISBN 978-1-4020-4019-1, retrieved 2023-04-12
  28. ^ Richardson, Alan E.; Simpson, Richard J. (2011-05-23). "Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus". Plant Physiology. 156 (3): 989–996. doi:10.1104/pp.111.175448. ISSN 1532-2548.
  29. ^ Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O. (2017-06-02). "Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture". Frontiers in Microbiology. 8. doi:10.3389/fmicb.2017.00971. ISSN 1664-302X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  30. ^ Luo, Gongwen; Sun, Bo; Li, Ling; Li, Minghui; Liu, Manqiang; Zhu, Yiyong; Guo, Shiwei; Ling, Ning; Shen, Qirong (2019-12). "Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations". Soil Biology and Biochemistry. 139: 107632. doi:10.1016/j.soilbio.2019.107632. ISSN 0038-0717. {{cite journal}}: Check date values in: |date= (help)
  31. ^ Partanen, Pasi; Hultman, Jenni; Paulin, Lars; Auvinen, Petri; Romantschuk, Martin (2010-03-29). "Bacterial diversity at different stages of the composting process". BMC Microbiology. 10 (1). doi:10.1186/1471-2180-10-94. ISSN 1471-2180.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  32. ^ Bhatia, Akansha; Madan, Sangeeta; Sahoo, Jitendra; Ali, Muntjeer; Pathania, Ranjana; Kazmi, Absar Ahmed (2013-07). "Diversity of bacterial isolates during full scale rotary drum composting". Waste Management. 33 (7): 1595–1601. doi:10.1016/j.wasman.2013.03.019. ISSN 0956-053X. {{cite journal}}: Check date values in: |date= (help)
  33. ^ Hirai, Hisashi; Takada, Hideshige; Ogata, Yuko; Yamashita, Rei; Mizukawa, Kaoruko; Saha, Mahua; Kwan, Charita; Moore, Charles; Gray, Holly; Laursen, Duane; Zettler, Erik R.; Farrington, John W.; Reddy, Christopher M.; Peacock, Emily E.; Ward, Marc W. (2011-08). "Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches". Marine Pollution Bulletin. 62 (8): 1683–1692. doi:10.1016/j.marpolbul.2011.06.004. ISSN 0025-326X. {{cite journal}}: Check date values in: |date= (help)
  34. ^ Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F.-X.; Kalogerakis, Nicolas (2017-12-21). "Biodegradation of weathered polystyrene films in seawater microcosms". Scientific Reports. 7 (1). doi:10.1038/s41598-017-18366-y. ISSN 2045-2322.
  35. ^ Cornejo-D’Ottone, Marcela; Molina, Verónica; Pavez, Javiera; Silva, Nelson (2020-05). "Greenhouse gas cycling by the plastisphere: The sleeper issue of plastic pollution". Chemosphere. 246: 125709. doi:10.1016/j.chemosphere.2019.125709. {{cite journal}}: Check date values in: |date= (help)
  36. ^ Moresco, Vanessa; Oliver, David M.; Weidmann, Manfred; Matallana-Surget, Sabine; Quilliam, Richard S. (2021-08). "Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments". Environmental Research. 199: 111367. doi:10.1016/j.envres.2021.111367. {{cite journal}}: Check date values in: |date= (help)