Jump to content

User:Estra150/sandbox

From Wikipedia, the free encyclopedia

Good review. Sources and references are the same thing. Might be a good candidate for the group project.

Dielectric heating, also known as electronic heating, RF (radio frequency) heating, and high-frequency heating, is the process in which a radio frequency alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material. At higher frequencies, this heating is caused by molecular dipole rotation within the dielectric.

RF dielectric heating at intermediate[clarification needed] frequencies, due to its greater penetration over microwave heating, shows greater promise than microwave systems as a method of very rapidly heating and uniformly preparing certain food items, and also killing parasites and pests in certain harvested crops.

Vacuum packing is a method of packaging that removes air from the package prior to sealing. This method involves (manually or automatically) placing items in a plastic film package, removing air from inside, and sealing the package.

Article evaluation: Modified atmosphere/modified humidity packaging

  • Last edited 2016.
  • The sections in the article seems to be relevant to the topic. However, a lot of information was just a repeat from the other sections. Some statements also appear in quotation marks. I am unsure if this was the old format for referencing.
  • Most of the sections in the article are underrepresented since the information was just repeating from another section.
  • What is the difference between sources and references? The list for sources has incomplete information, only name of the authors and date were listed. Is it from a book or journal?
  • Link for only one reference (out of 5 listed) actually worked.
  • Information in the article cannot be verified.
  • The article was written in 2009 and last edited in 2016. Might need to delete the page and do another article since the sources of the information are not verifiable.
  • Talk page only shows few minor edits. History shows one message suggesting the article to be deleted.
  • The article has no rating and was not part of any WikiProjects.
  • Topic was only briefly mentioned during the introduction of food preservation and was not discussed in depth in class

Food Extrusion: need to add citations in the article/rewrite information given in the article for clarity

  • Last edited October 2017
  • Need to edit definition, rewrite information given in the article
  • Sections in the article are relevant to the topic. However, some information needs to be verified (most specially the section titled “Effects”)
  • The article listed a number of good verifiable references.
  • The article was part of past WikiProjects (Chemicals, Pharmacology, Wiki_Ed/Rutgers_University—New_Brunswick/Food_Physical_Systems)
  • Overall: the article presented good amount of information and has good references. However, some parts needs to be verified, clarified and reorganized.

Wikipedia Project: Improve article "Modified Atmosphere Packaging" (directed to page "Modified Atmosphere")

Outline: Good additions to existing article. Flesh out the outline more fully.

Article edits done on Maria Khalil's sandbox

  • Scientific terms (Ana)
    • Add CAP: Controlled atmosphere packaging
    • Add VP: Vacuum packaging
  • History
    • Add more related history (Maria)
  • Products (Ana)
    • Include specific application examples for each commodity type
    • Add examples from review articles
  • Modified Atmosphere Packaging (MAP); Equilibrium Modified Atmosphere Packaging (EMAP)- (Ana)
    • These two sections can be combined; Rename sub topic as “Theory": summarize concepts and add citations
  • Technology (Maria)
    • Need to add citation: vacuum packaging and gas packaging
  • Gases- (Ana)
    • Add more information: mode of action for the gases used/ reorganize section; add citations
      • Identify the main gases used: nitrogen, oxygen and carbon dioxide
      • Discuss importance of lowered amount of oxygen, increased amount of carbon dioxide, replacement with nitrogen or combination of gases to extend shelf life of products
  • Packaging Films
  • Add section: Equipment (Maria)
  • QA of MAP Packages- (Maria)
  • Add section: Effect on microorganisms- (Ana)
    • Discuss safety and quality issues related to modified atmosphere.

List of additional references:

Blakistone, B.A (1998). Principles and applications of modified atmosphere packaging of foods (2nd ed).London, UK: Blackwell Academic & Professional.

Brody, A.L.,, Zhuang, H., Han, J.H. (2011). Modified atmosphere packaging for fresh-cut fruits and vegetables. West Sussex, UK: Blackwell Publishing Ltd.

Fellows, P.J. (2017). Food processing technology: Principles and practice (4th ed). Duxford, UK: Woodhead Publishing (pp.992-1001)

Cortellino, G., Gobbi, S., Bianchi, G., and Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends in Food Science & Technology 46: 320-330.

Improve article: Modified atmosphere packaging

Modified atmosphere is the practice of modifying the composition of the internal atmosphere of a package (commonly food packages, drugs, etc.) in order to improve the shelf life.

The modification process often lowers the amount of oxygen (O2), typically from 20.9% to 0%, in order to slow down the growth of aerobic organisms and prevent oxidationreactions. The removed oxygen can be replaced with nitrogen (N2), a comparatively inert gas, or carbon dioxide (CO2), which can lower the pH or inhibit the growth of bacteria. Carbon monoxide can be used for preserving the red color of meat.

Re-balancing of gases inside the packaging can be achieved using active techniques such as gas flushing and compensated vacuum or passively by designing “breathable” films known as equilibrium modified atmosphere packaging (EMAP). Packets containing scavengers may be used.

Contents[edit]

 [hide]

Scientific terms[edit][edit]

  • MAP = Modified atmosphere packaging
  • EMAP = Equilibrium modified atmosphere packaging
  • MA/MH = Modified atmosphere/modified humidity packaging

History[edit][edit]

Controlled Atmosphere Storage (CAS) was used from the 1930s when ships transporting fruits had high levels of CO2 in their holding rooms in order to increase the shelf life of the product. In the 1970s MA packages reached the stores when bacon and fish were sold in retail packs in Mexico. Since then development has been continuous and interest in MAP has grown due to consumer demand. This has led to advances, for example in the design and manufacturing of bacon films. New techniques have been developed, such as the use of an anti-fogging layer to improve product visibility. A new packaging technique, EMAP, has been developed to expand the MAP approach.

Products[edit][edit]

The three major commodity types are fruits and vegetables, meat and meat products, and seafood. Many products such as red meat, seafood, minimally processed fruits and vegetables, salads, pasta, cheese, bakery goods, poultry, cooked and cured meats, ready meals and dried foods are packaged under MA.

Modified Atmosphere Packaging (MAP)[edit][edit]

Modified Atmosphere Packaging (MAP) is a technique used to prolong the shelf life of fresh or minimally processed foods. In this preservation technique the composition of the air surrounding the food in the package is modified in order to extend the initial fresh state of the product. The shelf life of perishable products like meat, fish, fruits and vegetables can be prolonged with MAP since it slows the natural deterioration of the product. The mixture of gases selected for a MAP package depends on the type of product, the packaging materials and the storage temperature.

Since meat, fish and cheese are non-respiring products needing very low gas permeability films, so-called high barrier films are used. The initial flushed gas-mixture is maintained inside the MA package. Conversely, fruits and vegetables are respiring products where the interaction of the packaging material with the product is important and so low barrier or so-called high permeability films are used for them. If the permeability (for O2and CO2) of the packaging film is adapted to the product's level of respiration, an equilibrium-modified atmosphere will be established in the package and the shelf life of the product will increase.

Equilibrium Modified Atmosphere Packaging (EMAP)[edit][edit]

For fresh-cut produce Equilibrium Modified Atmosphere Packaging (EMAP) is the most commonly used packaging technology. When packaging vegetables and fruits the gas atmosphere of package is not air (O2 21%; CO2 0.038%; N2 78%) but consists usually of a lowered level of O2 and a heightened level of CO2. This kind of package slows down the normal respiration of the product to prolong its shelf life. Of course there are other factors, like the size of the product, severity of preparation, maturity of the product and type of tissue that have an effect to the shelf life of EMA packaged produce.

Technology[edit][edit]

Two techniques are used in the industry to pack vegetables, namely, gas-flushing and compensated vacuum. In gas-flushing the desired gas mixture is instilled in quantity into the packaging, pushing out the air, whereas in compensated vacuum the air is removed and the desired gas mixture is then instilled. The label "packaged in a protective atmosphere" can refer to either method. An example of a gas used for non-vegetable packaged food (such as crisps) is 99.9% nitrogen gas, which is inert (compared with air) at the temperatures and pressures to which the packaging is subjected.[citation needed]

Gases[edit][edit]

The atmosphere in an MA package consists mainly of adjusted amounts of N2, O2, and CO2. It is the selected ratio of these gases that prolongs shelf life, and each food product has its own ideal gas mixture. For example, by reducing the O2-level and increasing the CO2-level, the ripening of many fruits and vegetables can be delayed, respiration and ethylene production rates can be reduced, softening can be retarded, and various compositional changes associated with ripening can be slowed down.

Oxygen helps to keep the fresh and natural color of food products, prevents the growth of anaerobic bacteria (present in certain types of fish and vegetables) and allows fresh fruit and vegetables to breathe. In the case of fruit and vegetables, the absence of O2 can lead to anaerobic respiration in the package, which accelerates senescence and spoilage. Levels of O2 that are too high do not retard respiration significantly. At around 12% of O2 the respiration rate starts to decrease, so oxygen is used at lower levels (3-5%) for positive effect. When packaging meat and fish, for example, high CO2 levels are effective bacterial and fungal growth inhibitors. In the case of vegetables and fruits, CO2 is not a major factor since CO2 levels above 10% are needed to suppress fungal growth significantly. Unfortunately, levels higher than 10% of CO2 are phytotoxic for fruit and vegetables. Nitrogen, for example, is used as a filler gas since it neither encourages nor discourages bacterial growth and prevents the oxidative rancidity caused by the presence of oxygen in packaged snacks and dried products.

There has been debate regarding the use of carbon monoxide (CO) in the packaging of red meat. While no risk was found in the use of low levels of CO, the point was raised that CO maintains the color of the meat, and that it can accordingly hide visual evidence of spoilage. The European Food Information Council (EFIC) released a report in 2001 reviewing the data.

Packaging films[edit][edit]

When selecting packaging films (web substrates) for EMAP of fruits and vegetables the main characteristics to consider are gas permeability, water vapour transmission rate, mechanical properties, transparency, type of package and sealing reliability. Traditionally used packaging films like LDPE (low-density polyethylene), PVC (polyvinyl chloride), EVA (ethylene-vinyl acetate) and OPP (oriented polypropylene) are not permeable enough for highly respiring products like fresh-cut produce, mushrooms and broccoli. As fruits and vegetables are respiring products, there is a need to transmit gases through the film. Films designed with these properties are called permeable films. Other films, called barrier films, are designed to prevent the exchange of gases and are mainly used with non-respiring products like meat and fish.

EMAP films developed to control the humidity level as well as the gas composition in the sealed package are beneficial for the prolonged storage of fresh fruits, vegetables and herbs that are sensitive to moisture. These films are commonly referred to as modified atmosphere/modified humidity packaging (MA/MH)films.

Quality assurance of MAP packages[edit][edit]

Although Modified Atmosphere Packaging is a well-established process, it is a good practice to maintain tight quality assurance through package testing. Incorrect oxygen levels, empty gas cylinders and bad sealing bars can cause imprecise gas blends and poor package seals that can result in product spoilage. Routine package testing with headspace gas analysers, on-line gas analysers and leak detectors assures package quality, and hence helps to maintain shelf life.

There are a number of analysers on the market for Modified Atmosphere Packaging to verify whether the gas mix is correct and to ensure that the seal is not leaking. Units built into packaging systems as well as hand-held analysers can be used.