From Wikipedia, the free encyclopedia
This is
the user sandbox of Cabb99 . A user sandbox is a subpage of the user's
user page . It serves as a testing spot and page development space for the user and is
not an encyclopedia article .
Create or edit your own sandbox here . Other sandboxes: Main sandbox | Template sandbox
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
V
(
r
N
)
=
∑
bonds
k
b
(
l
−
l
0
)
2
+
∑
angles
k
a
(
θ
−
θ
0
)
2
{\displaystyle V(r^{N})=\sum _{\mbox{bonds}}k_{b}(l-l_{0})^{2}+\sum _{\mbox{angles}}k_{a}(\theta -\theta _{0})^{2}}
+
∑
dihedrals
k
ϕ
[
1
+
cos
(
n
ϕ
−
δ
)
]
{\displaystyle +\sum _{\mbox{dihedrals}}k_{\phi }[1+\cos(n\phi -\delta )]}
+
∑
j
=
1
N
−
1
∑
i
=
j
+
1
N
{
ϵ
i
,
j
[
(
r
0
i
j
r
i
j
)
12
−
2
(
r
0
i
j
r
i
j
)
6
]
+
q
i
q
j
4
π
ϵ
0
r
i
j
}
{\displaystyle +\sum _{j=1}^{N-1}\sum _{i=j+1}^{N}\left\{\epsilon _{i,j}\left[\left({\frac {r_{0ij}}{r_{ij}}}\right)^{12}-2\left({\frac {r_{0ij}}{r_{ij}}}\right)^{6}\right]+{\frac {q_{i}q_{j}}{4\pi \epsilon _{0}r_{ij}}}\right\}}
The functional form of the AMBER force field is[ 1]
V
(
r
N
)
=
∑
bonds
k
b
(
l
−
l
0
)
2
+
∑
angles
k
a
(
θ
−
θ
0
)
2
{\displaystyle V(r^{N})=\sum _{\mbox{bonds}}k_{b}(l-l_{0})^{2}+\sum _{\mbox{angles}}k_{a}(\theta -\theta _{0})^{2}}
+
∑
torsions
1
2
V
n
[
1
+
cos
(
n
ω
−
γ
)
]
{\displaystyle +\sum _{\mbox{torsions}}{\frac {1}{2}}V_{n}[1+\cos(n\omega -\gamma )]}
+
∑
j
=
1
N
−
1
∑
i
=
j
+
1
N
{
ϵ
i
,
j
[
(
r
0
i
j
r
i
j
)
12
−
2
(
r
0
i
j
r
i
j
)
6
]
+
q
i
q
j
4
π
ϵ
0
r
i
j
}
{\displaystyle +\sum _{j=1}^{N-1}\sum _{i=j+1}^{N}\left\{\epsilon _{i,j}\left[\left({\frac {r_{0ij}}{r_{ij}}}\right)^{12}-2\left({\frac {r_{0ij}}{r_{ij}}}\right)^{6}\right]+{\frac {q_{i}q_{j}}{4\pi \epsilon _{0}r_{ij}}}\right\}}
Note that despite the term force field, this equation defines the potential energy of the system; the force is the derivative of this potential with respect to position.
The OPLS (Optimized Potentials for Liquid Simulations) force field was developed by Prof. William L. Jorgensen at Purdue University and later at Yale University .
The functional form of the OPLS force field is very similar to that of AMBER :
E
(
r
N
)
=
E
b
o
n
d
s
+
E
a
n
g
l
e
s
+
E
d
i
h
e
d
r
a
l
s
+
E
n
o
n
b
o
n
d
e
d
{\displaystyle E\left(r^{N}\right)=E_{\mathrm {bonds} }+E_{\mathrm {angles} }+E_{\mathrm {dihedrals} }+E_{\mathrm {nonbonded} }}
E
b
o
n
d
s
=
∑
b
o
n
d
s
K
r
(
r
−
r
0
)
2
{\displaystyle E_{\mathrm {bonds} }=\sum _{\mathrm {bonds} }K_{r}(r-r_{0})^{2}\,}
E
a
n
g
l
e
s
=
∑
a
n
g
l
e
s
k
θ
(
θ
−
θ
0
)
2
{\displaystyle E_{\mathrm {angles} }=\sum _{\mathrm {angles} }k_{\theta }(\theta -\theta _{0})^{2}\,}
E
d
i
h
e
d
r
a
l
s
=
V
1
2
[
1
+
cos
(
ϕ
−
ϕ
0
)
]
+
V
2
2
[
1
−
cos
2
(
ϕ
−
ϕ
0
)
]
+
V
3
2
[
1
+
cos
3
(
ϕ
−
ϕ
0
)
]
+
V
4
2
[
1
−
cos
4
(
ϕ
−
ϕ
0
)
]
{\displaystyle E_{\mathrm {dihedrals} }={\frac {V_{1}}{2}}\left[1+\cos(\phi -\phi _{0})\right]+{\frac {V_{2}}{2}}\left[1-\cos 2(\phi -\phi _{0})\right]+{\frac {V_{3}}{2}}\left[1+\cos 3(\phi -\phi _{0})\right]+{\frac {V_{4}}{2}}\left[1-\cos 4(\phi -\phi _{0})\right]}
E
n
o
n
b
o
n
d
e
d
=
∑
i
>
j
f
i
j
(
A
i
j
r
i
j
12
−
C
i
j
r
i
j
6
+
q
i
q
j
e
2
4
π
ϵ
0
r
i
j
)
{\displaystyle E_{\mathrm {nonbonded} }=\sum _{i>j}f_{ij}\left({\frac {A_{ij}}{r_{ij}^{12}}}-{\frac {C_{ij}}{r_{ij}^{6}}}+{\frac {q_{i}q_{j}e^{2}}{4\pi \epsilon _{0}r_{ij}}}\right)}
with the combining rules
A
i
j
=
A
i
i
A
j
j
{\displaystyle A_{ij}={\sqrt {A_{ii}A_{jj}}}}
and
C
i
j
=
C
i
i
C
j
j
{\displaystyle C_{ij}={\sqrt {C_{ii}C_{jj}}}}
.
^ Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995). "A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules". J. Am. Chem. Soc . 117 : 5179–5197. doi :10.1021/ja00124a002 . {{cite journal }}
: CS1 maint: multiple names: authors list (link )