Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results.
Astronomy is one of the few sciences in which amateurs play an active role. This is especially true for the discovery and observation of transient events. Amateur astronomers have helped with many important discoveries, such as finding new comets. (Full article...)
Image 4ALMA is the world's most powerful telescope for studying the Universe at submillimeter and millimeter wavelengths. (from Observational astronomy)
Image 6Artist conception of the Big Bang cosmological model, the most widely accepted out of all in physical cosmology (neither time nor size to scale) (from Physical cosmology)
Image 9The inflationary theory as an augmentation to the Big Bang theory was first proposed by Alan Guth of MIT. Inflation solves the 'horizon problem' by making the early universe much more compact than was assumed in the standard model. Given such smaller size, causal contact (i.e., thermal communication) would have been possible among all regions of the early universe. The image was an adaptation from various generic charts depicting the growth of the size of the observable universe, for both the standard model and inflationary model respectively, of the Big Bang theory. (from Physical cosmology)
Image 15The main platform at La Silla hosts a huge range of telescopes with which astronomers can explore the Universe. (from Observational astronomy)
Image 16Places like Paranal Observatory offer crystal clear skies for observing astronomical objects with or without instruments. (from Amateur astronomy)
Image 19Portrait of the Flemish astronomer Ferdinand Verbiest who became head of the Mathematical Board and director of the Observatory of the Chinese emperor in 1669 (from Astronomer)
Image 26Comparison of CMB (Cosmic microwave background) results from satellites COBE, WMAP and Planck documenting a progress in 1989–2013 (from History of astronomy)
Image 27Segment of the astronomical ceiling of Senenmut's Tomb (circa 1479–1458 BC), depicting constellations, protective deities, and twenty-four segmented wheels for the hours of the day and the months of the year (from History of astronomy)
Image 28Amateur astronomer recording observations of the sun. (from Amateur astronomy)
Image 37An image of the Cat's Paw Nebula created combining the work of professional and amateur astronomers. The image is the combination of the 2.2-metre MPG/ESO telescope of the La Silla Observatory in Chile and a 0.4-meter amateur telescope. (from Amateur astronomy)
Image 38An example of a gravitational lens found in the DESI Legacy Surveys data. There are four sets of lensed images in DESI-090.9854-35.9683, corresponding to four distinct background galaxies—from the outermost giant red arc to the innermost bright blue arc, arranged in four concentric circles. All of them are gravitationally warped—or lensed—by the orange galaxy at the very center. Dark matter is expected to produce gravitational lensing also. (from Physical cosmology)
This is a Featured article, which represents some of the best content on English Wikipedia.
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.
According to the nebular theory, stars form in massive and dense clouds of molecular hydrogen—giant molecular clouds (GMC). These clouds are gravitationally unstable, and matter coalesces within them to smaller denser clumps, which then rotate, collapse, and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk (proplyd) around the young star. This may give birth to planets in certain circumstances, which are not well known. Thus the formation of planetary systems is thought to be a natural result of star formation. A Sun-like star usually takes approximately 1 million years to form, with the protoplanetary disk evolving into a planetary system over the next 10–100 million years. (Full article...)
Credit: ESA / Hubble & NASA / Acknowledgement: Judy Schmidt (Geckzilla)
Hubble Space Telescope image of NGC 6052, discovered on 11 June 1784 by William Herschel. The two components of NGC 6052 are designated NGC 6052A and NGC 6052B are attracted by each other's gravity, have collided and are interacting with each other.