Summary
Source Code
The graph was made in Matlab with the following source code
% Function data
[X,Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = (X.^2).*Y;
% Constraint data
t = -pi:0.01:pi;
xc = sqrt(3)*cos(t);
yc = sqrt(3)*sin(t);
zc = xc.^2 .* yc;
% Plot graph and constraint
figure();
surface = surfc(X,Y,Z);
hold on;
plot3(xc, yc, zc, 'k', 'LineWidth', 2);
plot3(xc, yc ,-10*ones(1,length(t)), 'k', 'LineWidth', 1);
set(gcf, 'Color', [1 1 1]);
set(gcf, 'Position', [46 107 767 682]);
% Axis labels
text(0.2, -3, -10, 'x');
text(2.5, -.5, -10, 'y');
text(-2.4, -2, 0, 'z');
% Annotations of the max and min points
% Point indicating max #1
plot3(sqrt(2), 1, 2, 'kx', 'MarkerSize', 14, 'LineWidth', 2);
plot3(sqrt(2), 1, -10, 'kx', 'MarkerSize', 10, 'LineWidth', 2);
text('Interpreter', 'latex',...
'String', '$$(\sqrt{2}, 1, 2)$$',...
'Position', [1.1 .1 2.1],...
'FontSize', 20);
% Point indicating max #2
plot3(-sqrt(2), 1, 2, 'kx', 'MarkerSize', 14, 'LineWidth', 2);
plot3(-sqrt(2), 1, -10, 'kx', 'MarkerSize', 10, 'LineWidth', 2);
text('Interpreter', 'latex',...
'String', '$$(-\sqrt{2}, 1, 2)$$',...
'Position', [-1.6 .1 2.1],...
'FontSize', 20);
% Point indicating min #1
plot3(sqrt(2), -1, -2, 'kx', 'MarkerSize', 14, 'LineWidth', 2);
plot3(sqrt(2), -1, -10, 'kx', 'MarkerSize', 10, 'LineWidth', 2);
plot3(0,1,-3,'kx')
text('Interpreter', 'latex',...
'String', '$$(\sqrt{2}, -1, -2)$$',...
'Position', [.5 -.8 -1.4],...
'FontSize', 20);
% Point indicating min #2
plot3(-sqrt(2), -1, -2, 'kx', 'MarkerSize', 14, 'LineWidth', 2);
plot3(-sqrt(2), -1, -10, 'kx', 'MarkerSize', 10, 'LineWidth', 2);
text('Interpreter', 'latex',...
'String', '$$(-\sqrt{2}, -1, -2)$$',...
'Position', [-1.9 -.8 -1],...
'FontSize', 20);
hold off;
shading interp;
view([25 18]);
%plot2svg must be retrieved from http://www.zhinst.com/blogs/schwizer/
plot2svg;
Corresponding Mathematica code:
Block[{x, y, f = #^2 #2 &, g = #^2 + #2^2 &, c = 3},
sol = With[{max = MaxValue[{f[x, y], g[x, y] == c}, {x, y}]},
Solve[{f[x, y] == max, g[x, y] == c}, {x, y}, Reals]
];
Show[
Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, Mesh -> {{c}},
MeshFunctions -> g, PlotRange -> All, Boxed -> False,
AspectRatio -> 1, PlotPoints -> 30, MeshStyle -> Cyan,
PerformanceGoal -> "Quality", ColorFunction -> "DeepSeaColors"],
Graphics3D[{Red, PointSize[Large], Point[{x, y, f[x, y]} /. sol]}]
]
]
Licensing
You are free:
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original. https://creativecommons.org/licenses/by-sa/3.0 CC BY-SA 3.0 Creative Commons Attribution-Share Alike 3.0 true true English Add a one-line explanation of what this file represents