Jump to content

Draft:Maya Koronyo-Hamaoui

From Wikipedia, the free encyclopedia
Maya Koronyo-Hamaoui
NationalityIsraeli, American
Alma materThe Weizmann Institute of Science, Postdoc Fellowship
Tel Aviv University, BS, MS, PhD
Occupation(s)Professor, Neurosurgery, Neurology, Biomedical Sciences
Known fordiscovery of Alzheimer's disease hallmarks in the retina
SpouseYosef Koronyo
Children2
Scientific career
FieldsAlzheimer's disease, Neuroimmunology, Neuro-ophthalmology
InstitutionsCedars-Sinai Medical Center
Doctoral advisorAbaraham Weizman, Eva Gak, Boleslav Goldman
Other academic advisorsMichal Schwartz, Keith Black (surgeon)
WebsiteKoronyo-Hamaoui Lab

Maya Koronyo (née Hamaoui, born November 6, 1969) (academic name: Maya Koronyo-Hamaoui) is a researcher in the fields of neuroscience and neuroimmunology, and is currently a professor of Neurosurgery at Cedars-Sinai Medical Center and the principal investigator of the Koronyo-Hamaoui Lab. Koronyo-Hamaoui is recognized in the field of Alzheimer's disease research, particularly for her work on the role of innate immune cells in the disease's progression and the development of immune-based therapies.

Education

[edit]

Koronyo-Hamaoui received her Bachelor of Science degree in Natural Sciences from Tel Aviv University. After graduation, she obtained her Masters of Science in Human Genetics and later her Ph.D. at the Tel Aviv University Faculty of Medical and Health Sciences. She then received a postdoctoral fellowship in Neuroimmunology at the Department of Neurobiology at the Weizmann Institute of Science under the mentorship of Michal Schwartz.

Professional appointments

[edit]

In 2006, Koronyo-Hamaoui joined the faculty of Cedars-Sinai Medical Center, as a research scientist and rapidly advanced to become a faculty assistant professor in 2010. She is currently a Professor in Neurosurgery and the Principal Investigator of the Koronyo-Hamaoui Lab.[1]

Koronyo-Hamaoui is a member of the Society for Neuroscience, the Alzheimer's Association, the Society for Brain Mapping and Therapeutics, the International Society of Neuroimmunology, the Association for Research in Vision and Ophthalmology, and the American Association of Immunologists. She is also a board editor for the Public Library of Science, an editorial board member for Alzheimer's & Dementia: Diagnosis, Assessment, & Disease Monitoring (DADM) launched by the Alzheimer's Association, an editorial member in Frontiers in Neuroscience journals, and a former executive guest editor for Current Alzheimer Research.

Research contributions

[edit]

Koronyo-Hamaoui's research is primarily focused on the role of innate immune cells like peripheral monocytes and macrophages in the repair and regeneration of the central nervous system, as well as developing immunomodulation-based treatments for Alzheimer's Disease.[2] Her work has pioneered research that challenges and expands the traditional understanding of the role of peripheral innate immunity and the retina in neurodegenerative disorders[3].

Koronyo-Hamaoui Lab

[edit]

The Koronyo-Hamaoui lab at Cedars-Sinai Medical Center is investigating how immune cells contribute to repair and regeneration in the central nervous system and is developing immunomodulation therapies for Alzheimer’s disease[4][5]. The team is also examining the disease's pathological fingerprint in the retina, having discovered the evidence of specific diagnostic signs of disease-related plaques, and has pioneered innovative, low-cost, noninvasive retinal imaging techniques for early detection in patients[6][7].

Notable breakthrough research includes:

  • Identification of Alzheimer's disease pathology in the retina[8][9] in the following areas: amyloid plaques[10][11], amyloid beta oligomers[12], perivascular amyloid deposition[13], pericyte loss[14], melanopsin retinal ganglion cell loss[15], retinal capillary degeneration and compromised blood-retinal barrier integrity in mice models[16], and deficits in color vision in animal models[17][18].
  • Development of the first-ever noninvasive high-resolution retinal amyloid imaging methodology in animal models and human patients[19][20][21][22], which can be used to identify retinal tau isoforms[23], quantify the retinal venular vessel tortuosity index (which, when combined with the amyloid count, can predict verbal memory loss)[24],
  • First demonstration of spontaneous infiltration of peripheral monocytes into the brain parenchyma of murine models of Alzheimer's disease[25]
  • Discovery of the therapeutic effects of bone marrow-derived monocytes in synaptic and cognitive preservation[26][27][28][29]
  • the novel role of OPN/SPP1 in macrophage-mediated cerebral clearance of Aβ[30][31].

Other Research Areas

[edit]

Koronyo-Hamaoui has also conducted research both within the scope of neurodegenerative diseases and beyond. Some notable contributions include:

  • the possible contribution of glatiramer acetate to the brain's resistance to Alzheimer's Disease in mouse models[32][33][34]
  • identifying drivers of aging and tissue pathology with CD8 T cells in mouse models[35]
  • observing thymic dysfunction in both animal and human models as a co-morbidity factor in amyotrophic lateral sclerosis (ALS)[36], as well as identifying the liver as a potential additional site of major pathology ALS in mouse models[37]
  • documenting how global T-cell deficiency worsens motor defects in Parkinson's disease in rat models[38]
  • identifying genes that carry a potential predisposition for anorexia nervosa[39][40][41]
  • research that supports the association between major psychosis and the KCNN3 gene[42]

Awards and honors

[edit]

Koronyo-Hamaouis' work has primarily been funded by the National Institutes of Health, the National Institute on Aging. Other notable awards include:

References

[edit]
  1. ^ "Koronyo-Hamaoui Lab". cedars-sinai.edu. Retrieved 7 October 2024.
  2. ^ "Dr. Maya Koronyo-Hamaoui PhD". asni.isniweb.org. Retrieved 7 October 2024.
  3. ^ "WATCH: Retinas: New potential clues in diagnosing, treating Alzheimer's" (video). youtube.com. ANI News. November 18, 2020.
  4. ^ "Koronyo-Hamaoui Lab". cedars-sinai.edu. Retrieved 7 October 2024.
  5. ^ "WATCH: Modified macrophages alleviate Alzheimer-related disease" (video). youtube.com. Investigate Explore Discover. February 15, 2021.
  6. ^ "Take care of your senses: The science behind sensory loss and dementia risk". nia.nih.gov. Retrieved 11 October 2024.
  7. ^ "WATCH: RETINAL IMAGING TO DETECT ALZHEIMER'S" (video). youtube.com. CNN. July 21, 2016.
  8. ^ "Alzheimer's first signs may appear in your eyes, study finds". www.cnn.com. Retrieved 11 October 2024.
  9. ^ Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, Barron E, Cook-Wiens G, Rodriguez AR, Medeiros R, Paulo JA, Gupta VB, Kramerov AA, Ljubimov AV, Van Eyk JE, Graham SL, Gupta VK, Ringman JM, Hinton DR, Miller CA, Black KL, Cattaneo A, Meli G, Mirzaei M, Fuchs DT, Koronyo-Hamaoui M (February 2023). "Retinal pathological features and proteome signatures of Alzheimer's disease". Acta Neuropathological. 145 (4): 409–438. doi:10.1007/s00401-023-02548-2. PMID 36773106.
  10. ^ Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (January 2011). "Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model". Neuroimage. 54 (1): 204–17. doi:10.1016/j.neuroimage.2010.06.020. PMID 20550967.
  11. ^ Shi H, Koronyo Y, Fuchs DT, Sheyn J, Jallow O, Mandalia K, Graham SL, Gupta VK, Mirzaei M, Kramerov AA, Ljubimov AV, Hawes D, Miller CA, Black KL, Carare RO, Koronyo-Hamaoui M (November 2023). "Retinal arterial Aβ40 deposition is linked with tight junction loss and cerebral amyloid angiopathy in MCI and AD patients". Alzheimer’s & dementia. 19 (11): 5185–5197. doi:10.1002/alz.13086. PMID 37166032.
  12. ^ Habiba U, Descallar J, Kreilaus F, Adhikari UK, Kumar S, Morley JW, Bui BV, Koronyo-Hamaoui M, Tayebi M (May 2021). "Detection of retinal and blood Aβ oligomers with nanobodies". Alzheimer’s & dementia. 13 (1): e12193. doi:10.1002/dad2.12193. PMID 33977118.
  13. ^ Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M (June 2024). "Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial". Acta neuropathologica communications. 12 (1): 109. doi:10.1186/s40478-024-01810-2. PMID 38943220.
  14. ^ Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn J, Fuchs DT, Kramerov AA, Ljubimov AV, Dumitrascu OM, Rodriguez AR, Barron E, Hinton DR, Black KL, Miller CA, Mirzaei N, Koronyo-Hamaoui M (May 2020). "Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina". Acta Neuropathological. 139 (5): 813–836. doi:10.1007/s00401-020-02134-w. PMID 32043162.
  15. ^ La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, Sambati L, Pan BX, Tozer KR, Barboni P, Provini F, Avanzini P, Carbonelli M, Pelosi A, Chui H, Liguori R, Baruzzi A, Koronyo-Hamaoui M, Sadun AA, Carelli V (January 2013). "Melanopsin retinal ganglion cell loss in Alzheimer disease". Annals of Neurology. 79 (1): 90–109. doi:10.1002/ana.24548. PMID 26505992.
  16. ^ Shi H, Koronyo Y, Fuchs DT, Sheyn J, Wawrowsky K, Lahiri S, Black KL, Koronyo-Hamaoui M (November 2020). "Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease". Acta neuropathologica communications. 8 (1): 202. doi:10.1186/s40478-020-01076-4. PMID 33228786.
  17. ^ Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M (November 2021). "Visual-stimuli Four-arm Maze test to Assess Cognition and Vision in Mice". Bio-protocol. 11 (22): e4234. doi:10.21769/BioProtoc.4234. PMID 34909455.
  18. ^ Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M (January 2021). "Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze". Scientific reports. 11 (1): 1255. doi:10.1038/s41598-021-80988-0. PMID 33441984.
  19. ^ Abassi J (October 2017). "A Retinal Scan for Alzheimer Disease". JAMA. 318 (14): 1314. doi:10.1001/jama.2017.15192.
  20. ^ Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs DT, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M (August 2017). "Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease". JCI Insight. 2 (16). doi:10.1172/jci.insight.93621. PMID 28814675.
  21. ^ Koronyo Y, Salumbides BC, Sheyn J, Pelissier L, Li S, Ljubimov V, Moyseyev M, Daley D, Fuchs DT, Pham M, Black KL, Rentsendorj A, Koronyo-Hamaoui M (September 2020). "Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline". Alzheimer's & dementia. 12 (1): e12109. doi:10.1002/dad2.12109. PMID 33015311.
  22. ^ Du X, Koronyo Y, Mirzaei N, Yang C, Fuchs DT, Black KL, Koronyo-Hamaoui M, Gao L (August 2022). "Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau". PNAS Nexus. 1 (4): 164. doi:10.1093/pnasnexus/pgac164. PMID 36157597.
  23. ^ Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A, Ramanujan VK, Fert-Bober J, Kramerov AA, Ljubimov AV, Schneider LS, Tourtellotte WG, Hawes D, Schneider JA, Black KL, Kayed R, Selenica MB, Lee DC, Fuchs DT, Koronyo-Hamaoui M (July 2024). "Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status". Acta Neuropathological. 148 (1): 3. doi:10.1007/s00401-024-02760-8. PMID 38980423.
  24. ^ Dumitrascu OM, Rosenberry R, Sherman DS, Khansari MM, Sheyn J, Torbati T, Sherzai A, Sherzai D, Johnson KO, Czeszynski AD, Verdooner S, Black KL, Frautschy S, Lyden PD, Shi Y, Cheng S, Koronyo Y, Koronyo-Hamaoui M (October 2021). "Retinal Venular Tortuosity Jointly with Retinal Amyloid Burden Correlates with Verbal Memory Loss: A Pilot Study". Cells. 10 (11): 2926. doi:10.3390/cells10112926. PMID 34909455.
  25. ^ Koronyo Y, Salumbides BC, Sheyn J, Pelissier L, Li S, Ljubimov V, Moyseyev M, Daley D, Fuchs DT, Pham M, Black KL, Rentsendorj A, Koronyo-Hamaoui M (August 2015). "Melanopsin retinal ganglion cell loss in Alzheimer disease Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease". Brain. 138 (8): 2399–422. doi:10.1093/brain/awv150. PMID 26049087.
  26. ^ Silva, Patrícia. "Promising Therapeutic Strategy for Alzheimer's Disease Based on Specific Immune Cells". alzheimersnewstoday.com. Retrieved 11 October 2024.
  27. ^ Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M (July 2007). "Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model". The European journal of neuroscience. 26 (2): 413–6. doi:10.1111/j.1460-9568.2007.05652.x. PMID 17623022.
  28. ^ Li S, Hayden EY, Garcia VJ, Fuchs DT, Sheyn J, Daley DA, Rentsendorj A, Torbati T, Black KL, Rutishauser U, Teplow DB, Koronyo Y, Koronyo-Hamaoui M (January 2020). "Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ42 Oligomers and Protect Synapses". Frontiers in immunology. 11 (1): 49. doi:10.3389/fimmu.2020.00049. PMID 32082319.
  29. ^ Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs DT, Regis GC, Lopes DH, Black KL, Bernstein KE, Teplow DB, Fuchs S, Koronyo Y, Rentsendorj A (January 2020). "Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease". Brain. 143 (1): 336–358. doi:10.1093/brain/awz364. PMID 31794021.
  30. ^ Rentsendorj A, Sheyn J, Fuchs DT, Daley D, Salumbides BC, Schubloom HE, Hart NJ, Li S, Hayden EY, Teplow DB, Black KL, Koronyo Y, Koronyo-Hamaoui M (January 2018). "A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models". Brain, behavior, and immunity. 67 (1): 163–180. doi:10.1016/j.bbi.2017.08.019. PMID 28860067.
  31. ^ Rentsendorj A, Raedschelders K, Fuchs DT, Sheyn J, Vaibhav V, Porritt RA, Shi H, Dagvadorj J, de Freitas Germano J, Koronyo Y, Arditi M, Black KL, Gaire BP, Van Eyk JE, Koronyo-Hamaoui M (May 2023). "Osteopontin depletion in macrophages perturbs proteostasis via regulating UCHL1-UPS axis and mitochondria-mediated apoptosis". Frontiers in immunology: 14. doi:10.3389/fimmu.2023.1155935. PMID 37325640.
  32. ^ Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M (August 2006). "Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1". Proceedings of the National Academy of Sciences of the United States of America. 103 (31): 11784–9. doi:10.1073/pnas.0604681103. PMID 16864778.
  33. ^ Doustar J, Rentsendorj A, Torbati T, Regis GC, Fuchs DT, Sheyn J, Mirzaei N, Graham SL, Shah PK, Mastali M, Van Eyk JE, Black KL, Gupta VK, Mirzaei M, Koronyo Y, Koronyo-Hamaoui M (October 2020). "Parallels between retinal and brain pathology and response to immunotherapy in old, late-stage Alzheimer's disease mouse models". Aging cell. 19 (11): e13246. doi:10.1111/acel.13246. PMID 33090673.
  34. ^ Bakalash S, Pham M, Koronyo Y, Salumbides BC, Kramerov A, Seidenberg H, Berel D, Black KL, Koronyo-Hamaoui M (November 2011). "Egr1 expression is induced following glatiramer acetate immunotherapy in rodent models of glaucoma and Alzheimer's disease". Investigative ophthalmology & visual science. 52 (12): 9033–46. doi:10.1167/iovs.11-7498. PMID 21969301.
  35. ^ Panwar A, Jhun M, Rentsendorj A, Mardiros A, Cordner R, Birch K, Yeager N, Duvall G, Golchian D, Koronyo-Hamaoui M, Cohen RM, Ley E, Black KL, Wheeler CJ (October 2020). "Functional recreation of age-related CD8 T cells in young mice identifies drivers of aging- and human-specific tissue pathology". Mechanisms of ageing and development. 191 (1): 111351. doi:10.1016/j.mad.2020.111351. PMID 32910956.
  36. ^ Seksenyan A, Ron-Harel N, Azoulay D, Cahalon L, Cardon M, Rogeri P, Ko MK, Weil M, Bulvik S, Rechavi G, Amariglio N, Konen E, Koronyo-Hamaoui M, Somech R, Schwartz M (October 2010). "Thymic involution, a co-morbidity factor in amyotrophic lateral sclerosis". Journal of cellular and molecular medicine. 14 (10): 2470–82. doi:10.1111/j.1582-4934.2009.00863.x. PMID 19650830.
  37. ^ Finkelstein A, Kunis G, Seksenyan A, Ronen A, Berkutzki T, Azoulay D, Koronyo-Hamaoui M, Schwartz M (August 2011). "Abnormal changes in NKT cells, the IGF-1 axis, and liver pathology in an animal model of ALS". PloS one. 6 (8): e22374. doi:10.1371/journal.pone.0022374. PMID 21829620.
  38. ^ Wheeler CJ, Seksenyan A, Koronyo Y, Rentsendorj A, Sarayba D, Wu H, Gragg A, Siegel E, Thomas D, Espinosa A, Thompson K, Black K, Koronyo-Hamaoui M, Pechnick R, Irvin DK (May 2014). "T-Lymphocyte Deficiency Exacerbates Behavioral Deficits in the 6-OHDA Unilateral Lesion Rat Model for Parkinson's Disease". Journal of neurology & neurophysiology. 5 (3): 209. doi:10.4172/2155-9562.1000209. PMID 25346865.
  39. ^ Koronyo-Hamaoui M, Frisch A, Stein D, Denziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Ram A, Zubery E, Jeczmien P, Apter A, Weizman A, Gak E (January 2007). "Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa". Journal of psychiatric research. 41 (1–2): 160–7. doi:10.1016/j.jpsychires.2005.07.010. PMID 16157352.
  40. ^ Koronyo-Hamaoui M, Gak E, Stein D, Frisch A, Danziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Apter A, Goldman B, Barkai G, Weizman A (November 2004). "CAG repeat polymorphism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa: a case-control study of female patients and several ethnic groups in the Israeli Jewish population". American journal of medical genetics. 131B (1): 76–80. doi:10.1002/ajmg.b.20154. PMID 15389773.
  41. ^ Koronyo-Hamaoui M, Danziger Y, Frisch A, Stein D, Leor S, Laufer N, Carel C, Fennig S, Minoumi M, Apter A, Goldman B, Barkai G, Weizman A, Gak E (January 2002). "Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study". Molecular psychiatry. 7 (1): 82–5. doi:10.1038/sj.mp.4000931. PMID 11803450.
  42. ^ Ritsner M, Amir S, Koronyo-Hamaoui M, Gak E, Ziv H, Halperin T, Kitain L, Navon R (September 2003). "Association study of CAG repeats in the KCNN3 gene in Israeli patients with major psychosis". Psychiatric genetics. 13 (3): 143–50. doi:10.1097/00041444-200309000-00002. PMID 12960745.
[edit]